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On the Importance of Representation

The thesis of this paper is that there are three types or codes of knowledge representation. There are

temogral V = which encode the sequential structure of a set of events. There are M images which store

information about the spatial configuration of objects. Finally, there are abstract rooositions which encode

abstract and semantically significant relations among objects. At a certain level this central thesis is hardly

news. The common man certainly suspected the existence of temporal strings in the form of word sequences.

Similarly, he suspected the existence of spatial images in the visual modality. If not the common man, at least

philosophers have suspected something like abstract propositions for centuries.

However, what is common sense is often not scientific fact and this common-sense hypothesis has been

rather resistant to precise scientific formulations. The dual-code hypothesis (e.g., Bower, 1972; Paivio, 1971)

has been advanced which argued for visual and verbal codes something like the temporal and spatial codes

proposed above. The propositional hypothesis has been advanced (e.g., Anderson & Bower, 1973; Chase &

Clark, 1972: Kintsch, 1974; Norman & Rumelhart, 1975; Pylyshyn, 1973; Reed. 1974) which argued that

there is a code very much like my abstract propositional code. These two hypotheses have usually been

offered as competitors and a major issue has been which was correct. Generally, it was not considered that

the truth might lie in the union of the two hypotheses (but see Anderson, 1980a; Baddeley, 1976; Kosslyn,

1980). In reviewing this debate I (Anderson, 1976, 1978) argued that it was fundamentally incapable of

resolution. However, this negative conclusion only applies to the view of representation as notation. I will

argue it does not extend to a view of representation a defined b p..e.

One important issue is to spell out in what sense one can advance a scientific hypothesis for a tri-code

theory. A second issue concerns what are the assumptions of that theory. Thc third issue is what thc evidence

is for such a theory. This paper will address these three issues. I will try to be as brief as possible about the

first issue, and focus on the second two which are where the real scientific content lies.

t~



Representation: Structure or Process?

My negative conclusions (Anderson, 1976, 1978) about representation were based on the interpretation of

representation A§ j the about notation. It is possible, however, to define representations in terms of the

processes that operate on them rather than the notations that express them. This is the point of view I want to

adopt in this paper. It is the same idea as underlies the concept of data types in computer science. A

knowledge structure has certain processes defined for it and other processes are undefined for that structure.

To be somewhat more concrete, one structure might have a rotate and a draw process defined for it, but not

M or ijn process, while another structure might have an insert and fl processes defined for it, but not a

rotate or draw. To foreshadow, we might want to call the first structure an image and the second a string. In

our theoretical discussion, we will need some notation for communicating the structures but this is merely

notation for purpose of communication. The real theory of representation lies in the processes. We can think

of the structures as "black boxes" on which certain processes will operate to produce results. The contents of

the black boxes will determine these results and so we need a notation to specify their contents. However, the

structure of our notation is not an assertion about the structure of the contents of these boxes.

A human mind at any point in time can be thought of as containing a large number, IL of knowledge

structures encoding the many things known. Individual knowledge structures would correspond to different

things known or different things encoded about the environment. The mental system also has some m

processes that operate on these structures. In the abstract, we can imagine specifying which processes operate

on which structures by a n x m matrix where each cell contains a 1 if that process is defined for that structure

and a 0 otherwise. Logically, it is possible that this matrix could be a completely random array of O's and I's.

However, it might turn out that there are many rows with the exact same pattern of O's and l's. That is, it

might turn out that a large subset of the structures have exactly the same set of processes defined. Another

large subset of structures might have another different (but perhaps overlapping) set of processes. It might be

possible to partition the very large number of structures into a relatively small number of subsets on this basis.

It would be a noteworthy result if it were possible to so partition the knowledge structures on the basis of

the processes defined upon them. It is certainly not an empirically vacuous outcome and tells us something
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very important about the human mind. That is, there are certain re nIaxinal ixes (an analogy to data

types from computer science) and different types are to be defined in terms of different processes. In this

paper, I will argue that there are at least three types (temporal string, spatial array, and abstract propositional);

and I will discuss the evidence for each.

The important observation, then, is that if we look at the processes defined on the structures we can define

reprenin wioe or cod which is a more abstract concept than reoresentational n which have been

the focus of the imagery debate. In Appendix 1 1 review my formal proof (Anderson, 1978) that

representational notations are subject to severe problems of indeterminacy but I also show there that

representational types are not subject to these same indeterminacy results. A useful analogy is to the contrast

between integers and floating point numbers which are distinct data types in most programming languages. A

programmer does not really care about the internal representation of these numbers. For him, the significant

factors are the differences in the operations he can perform on these two data types and differences in the

speed of these operations.

I will be proposing the existence of three types within a variant of the ACT (Anderson, 1976) production

system framework. It is only within such a general specification of an information-processing system that one

can be relatively precise about the nature of processes that define the representational types. I think the

arguments and evidence put forth here would have at least some informal force without specifying such a

framework. However, with respect to an issue that has proven as slippery as representation, one should strive

for as much precision as can be achieved.

The Production System Framework

According to Allen Newell (pcrsonal communication), production systems as a psychologically relevant

idea developed in the mid-sixties at Carnegie-Mellon University. It seems clear that their technical origins

derive from Post production systems (Post, 1943). It is probable (sec Newell & Simon, 1972: Anderson, 1976)

that production systems took some inspiration from both the strengths and weaknesses of stimulus-response

learning theory. A number of publications in the early seventies were responsible for introducing them into

the consciousness of psychology and artificial intelligence (e.g. Hunt & Poltrock, 1974; Newell, 1972, 1973;
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Newell & Simon, 1973; Waterman, 1970). My own work on these systems has been in the context of the ACT

theory (Anderson, 1976: 1983). There has been something of a divergence in the development of production

systems with computer scientists developing specialized versions to facilitate knowledge engineering

application and psychologically-minded folks sticking to more general conceptions. A conference on Pattern-

Directed Inference Systems in 1977 was filled with confrontation between these two groups. The publications

from this conference (Waterman & Hayes-Roth, 1978; and a special SIGART issue, 1977) presents much of

this confrontation.

The production system framework that I will be assuming here for initial discussion is a more general

version of the ACT productici system. Figure 1 presents the schematic representation of this general

architecture. The cognitive system has three essential components for present purposes - a limited-capacity

working memory that contains the current knowledge being operated upon, a production system that operates

on the contents of working memory, and a general long-term declarative memory which contains facts that

can be retrieved for use by working memory. This architecture is heretical from the point of view of the

prototypical Newell system in that it has a separate declarative memory component. In the prototypical

system there would only be production memory as a long-term memory base.

Insert Figure 1 about here

Working memory and long-term declarative memory are best conceived of as extensions of one another.

Working memory contains in part information retrieved from long-term memory and in part new information

which may or may not be encoded permanently in long-term memory. With respect to issues of knowledge

representation I want to restrict myself to the structures that reside in working memory and long-term

memory. The various arrows leading to and from working memory indicate some of the processes that

interact intimately with these working memory structures. Therefore, they will be critical to my process

interpretation of representation. Perception or encoding refers to the processes by which cxtcrnal stimuli

become encoded into working memory structures. It is reasonable to suspect that there might be a strong

connection between a theory of stimulus encoding and a theory of representation. One might well expect that
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different types of representations arise from different types of stimuli.

It is possible to store copies or encodings of working memory structures in long-term memory which later

can be retrieved back into working memory. These long-term storage and retrieval processes also contribute

to our understanding of the representation. We have to specify what the units are that are stored and what the

units are that are retrieved. In specifying the retrieval and storage processes we define what the cogniti

units (Anderson, 1980) are in our theory of knowledge representation.

Each production consists of a condition which is to be matched to the contents of working memory and an

action which can be executed to add to the contents of working memory.' The similarity structure of the

material is specified by the match process which decides what knowledge structures are similar enough to

match to the same condition patterns.

Productions calculate transformation of working memory. That is, they match in their condition a set of

cognitive units and specify in their action that new units be added to working memory. In the ACT

framework, but not in all production system frameworks, these transformations are basically incremental.

That is, the effect of a production is only to add new units to the system; it can never result in the deletion of

units. Thus, the transformation computed by a production can be interpreted as mapping a set of cognitive

units into a superset (the original units plus the additions). The one qualification to the incremental character

of ACT productions is that they can add to an existing unit and so effectively modify it. So when a

proposition is tagged as false it will no longer match to production conditions that it would previously have

matched.

Many of the interesting transformations and responses that a production system can calculate depend on

variable use. A variable is an clement of a condition which can match to any clement of working mcmory

provided that the element appears in certain specified configurations and meets certain tests. In ACT we refer

to thesc variables with terms prefixed by LV. Table I contains some examples of productions using variables

to calculate transformations. The first production matches a rectanglc in its condition. In so doing, the

variables LVpointl and LVpoint2 arc matched to the uppcr-left and lowcr-right corners of the rectangle. The
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action of this production creates a diagonal connecting these comers. It is the use of the variables LVpointl

and LVpoint2 which permit this transformation to be computed. Similarly, by use of variables the second

production transforms a phrase of the form "friend of John" to "John's friend". The final production

performs the inference that a parent's parent is a grandparent. The purpose of these productions is to

illustrate the importance of variables in creating transformations of working memory structure. I have

illustrated how productions might operate in a spatial array, a verbal string, and on a propositional structure.

The fact that I have specified each production in English (my informal theoretical language for the moment)

should not obscure that they may be operating on different representational types.

Insert Table 1 about here

It was arguea :n the previous section that a theory of different -epresentaion types would rest on the types

of processes our system possessed for each type. I will argue that different representational types are matched

differently in production conditions and have different production actions.

The Tri-Code Proposal 2

The basic proposal in this paper is the human system has at least three types of knowledge representation

which I will call temporal string, spatial image, and abstract proposition. The temporal string representation

is used for representing objects in sequence such as words in a sentence. It might be considered an ordinal

representation. The spatial image representation is appropriate for representing objects in spatial

configurations. I use the term spatial rather than visual to make clear that this representational system is not

tied to the visual modality. Both of these representations are analog in the sense that they try to preserve in

their structure some of the physical structure of what they arc representing. The abstract proposition, on the

other hand, attempts to represent in its structure the semantically-significant connections in what is to be

encoded. While it is easiest to ;pecify these three representational types in terms of the information they tend

to encode, this is not their fundamental distinction. It is always possible to contrive some way to represent

any information in any representation. The fundamental differences among the representations lie in the

different processes that use them.



Table 1
Three productions illustrating
the use of variables to create

transformations of data elements

P1: IF LV object is a rectangle
and LVpointl is the upper left corner of LVobject
and LVpoint2 is the lower right corner of L-Vobject

THEN create LVdiagonal with endpoints LVpointl and LVpoint2

P2: IF LVphrase has structure "LVnounl of LVnoun2"
THEN create LVphrasel with structure "LUnounTs LVnounl"

P3: IF LVpersonl is parent of LVperson2
and LVperson2 is parent of LVperson3

THEN LVpersonl is grandparent of LVperson3

1AtM
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To propose three or more representations is an obvious violation of standards of parsimony that have been

prevalent in discussions of representation. One of the supposedly strong arguments (e.g. Anderson & Bower,

1973) for the propositional theory over the dual-code theory of representation (Paivio. 1971) had been its

parsimony. However, these standards of parsimony reflect a too-narrow view of the phenomena to be

explained. If we take as our goal to explain how a system evolves and develops to become intelligent and

adaptive, then it would be very peculiar indeed if it did not have multiple representational types with

different types tuned to different needs. It would take a rather complex set of assumptions to explain why

there were not multiple representations.

Human cognition has to meet some very different demands. It has to process the ordinal structure of

language: it has to analyze the spatial relationships of the environment; and it has to capitalize on the

predictive character of the world permitted because of causal and inferential relationships. These are very

different problems and it would be very poor design to have all these needs met by a single representational

scheme rather than by multiple, different schemes that were optimized to deal with different aspects of the

environment. To take a natural analogy, it would be as if the human digestive system used a single digestive

substance for processing everything that was ingested An artificial analogy comes from the LISP

programming language. Initially, it was constructed with a very Spartan scheme for data representation that

was designed to optimize certain kinds of symbolic processing. Since that time it has proven necessary to

augment that language with facilities for array and string processing so that efficient performance could be

achieved in various applications.

I do not mean to imply that we have only three representational schemes but I think good cases can be

made for at least these three. Of course, what I really mean to denote by these representational systems are

the three different types of processes that operate upon the three different representations. Therefore, the

argument will be that the three types of representations bring with them processes that are well-suited for

various applications. Such observations of adaptive value, in themselves, are strong evidence for the existence

of these three representations. But. in addition, there is a considerable amount of empirical evidence pointing

to each representation-process system.
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Table 2 provides an organizational structure for the points to be made about the three representations.

Table 2 has the three representational types crossed with the five basic production system processes

- encoding of external information into a working memory format, storage of information into the long-term

declarative memory, retrieval from declarative memory, the match process by which information in working

memory selects productions for application, and the construction of new structures in working memory

through production execution. In each cell I have listed some of the properties of each process-by-type

combination. I make no claim that Table 2 nor this paper exhaustedly lists all the processes that operate on

any representational type. However, enough processes have been enumerated to justify the claim of distinct

types. That is, each of these three representational types has processes defined on it with properties unlike

those of the processes defined on any other data type. The next major sections will work through each data

type justifying the claims made about the processes that operate on it.

Insert Table 2 about here.

Note, however, that the three data types are not distinguished with respect to the storage and retrieval

processes for declarative memory. The final section of this paper will consider further the character of

declarative memory and see what the consequences are of not distinguishing between these data types in

declarative memory.

According to this analysis the case for distinct representational types is going to be made with respect to the

kinds of encoding, match, and execution processes. Note the argument is not, for instance, that a match

process is defined for one rcpresentational type and not for others. A production systcm could not function if

that were the case. Rather, the argument is that difTcrcnt match processes are defined for different types. The

evidence for this will come from the fact that the match process has different characteristics when applied to

different representational types.

Temporal String Representation



Table 2
Summary of. the Three Representations and

Their Properties

Temporal String Spatial Image Abstract Proposition

(1)Encoding Preserves temporal Preserves configural Preserves semantic
Process sequence in formation relations

(2)Storage All-or-none of All-or-none of All-or-none of
Process phrase units image units propositions

(3)Retrieval All-or-none of All-or-none of All-or-none of
Process phrase units image units propositions,

(4)Match
Process
(a)Degree of Match End-anchored Function of distance Function of set

at the beginning and configurations overlap

(b)Emcrgent Ordering of any two Distance, direction, Degree of
Patterns elements, next and overlap Connectivity

element

(5)Execution: Combination of Insertion of objects
Construction objects into linear Synthesis of existing into relational slots.
of new strings, insertion images, rotation filling in of
structures missing slots
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Encoding

The encoding process creates strings to record the sequential structure of events. It is a non-trivial question

just how stimuli are segmented into event-units, but assuming this segmentation, it is a constraint on the

encoding processes that they preserve the ordinal structure of events. A very important use of temporal

strings is to encode word or morpheme order in language. I (Anderson & Paulson. 1977) have used the term

verbal U to refer to temporal strings encoding word order.

A significant aspect of the encoding process is that it encodes ordinal but not interval information about the

event units. So, in a very important sense it is an abstraction from the event being encoded. It can be of great

advantage in processing language that only ordinal language information is recorded (at least once the

morphemes have been identified). The difficulty in converting speech into segmented units (Gill, Goldman,

Reddy & Yegnanarayana, 1978) is testimony to the fact that one would not want to continue to process the

speech signal as an interval structure. The fact that most rules of language interpretation (after phoneme

identification) make only minimal reference to exact temporal properties is perhaps motivated by the

difficulty of processing the exact temporal structure of a sequence spaced out over time. Similarly, inferring

the causal structure of an event sequence is critically dependent on the ordinal structure but often is not
drp enden -

i&4!: .on the interval structure. This is not to say that events like pauses cannot be significant, but when

they do occur they become another element, a pause, in the event sequence. Pauses can also be important in

determining the hierarchical structure of an ambiguous stimulus (e.g., Bower & Springston, 1970).

Further evidence for the belief that temporal strings encode only interval information is the poor quality of

human judgment about absolute time. This encoding scheme is in correspondence with a theory of time

perception (Ornstcin. 1969) which holds that passage of time is related to number of intervening events (or

units in a string rcpresentation). This is not to say that we absolutely cannot perceive or remember interval

properties of a time sequence: rather, the assertion is that such propcrti, are not directly encoded in the

temporal string. Such information can optionally be encoded as attributes of the ordered elements (e.g., "the

goal was scored at 2:03 of the second period").



Long sequences of events are not encoded as single-level linear structures but rather as hierarchies of

strings within strings. This is frequently referred to as phrase structuring where a phrase refers to the units in

a level of the hierarchy. A phrase typically contains five or less elements. The idea of such hierarchical

organization for temporal strings with a limited number of elements at any level has been proposed by many

researchers (e.g., Broadbent, 1975; Johnson, 1970; Lee & Estes, 1981; Wickelgren, 1979). These phrase

structures are often indicated by pause structures in serial recall.

Propositional vs. String Representation

One of the standard arguments for a propositional system over a multi-code system (e.g., Pylyshyn, 1973;

Anderson & Bower, 1973) has been that the propositional code is sufficient to encode all kinds of information.

It is particularly obvious how string information can be propositionalized and much of our research on

language processing (Anderson, Kline, & Lewis, 1977) has worked with propositional encodings of sentence

word order. Figure 2 shows the propositional network representation adapted from Anderson (1976) for "the

tall young man". The reader is undoubtedly struck by the complexity of this representation relative to the

simplicity of the string to be represented. The reason for the complexity is that one has to use conventions

that are optimized for representing the complexities of other knowledge structures and cannot capitalize on

the peculiar properties of the simple knowledge to be represented. The problem is not just one of awkward

notation. There is considerable inefficiency in processing because the processes must also consider the

needless detail. I think this example illustrates the efficiencies to be gained by permitting different

representational type

Insert Figures 2 and 3 about here.

Figure 3 shows a possible network notation for the suing encoding of (the tall young man). In addition to

representing the ordinal information. I have represented how other information would be encoded about the

elements of the string. For instance. I have represented the fact that tall was pronounced without articulating

the L and that voun was stressed. It is bccausc of the nccd to represent particular information about these

instantiations of the word that one needs a type-token distinction. That is, it is not the word voun in general
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that is stressed, but rather this token of it. When one needs to be explicit about the type-token distinction, it is

useful to use a network notation. In Figure 3, individual nodes represent the word tokens which point to the

words by type links. Also illustrated here are attribute links (to indicate token 3 is stressed) and a substructure

link to indicate the contents of token 2. Thus, in addition to the string structure, we need to have conventions

to represent category information (i.e. the types for the tokens), attribute information, and substructure

information. It will turn out that we will need similar category, attribute, and substructure embellishments for

the image and propositional representations. Thus, it would be too simplistic to think one could represent a

string by four elements. Still the notation is much more compact than Figure 2. Where Figure 2 had 42 links

Figure 3 has 13. This notational difference is significant because it implies a corresponding difference in the

complexity of the processing.

Image vs. String Representations If one cannot subsume string information under propositional encodings,

a natural tendency is to try to subsume it under spatial information. One might try to reduce temporal strings

to one dimensional spaces. However, it should be clear that they are not spatial structures because they do not

encode interval information and spatial structures do. The significance of the omission of interval

information will become clear when we consider the next and in=r operations that can only be defined on

ordinal structures, not on interval structures.

There has been a considerable history of comparing temporal versus spatial encodings of sequential
R.

structure (Anderson. 1976; Healy, 1975,1977; Hitch, 1974; Mandier & Anderson, 1971) and it has not been

supportive of the idea that spatial and temporal encodings are the same. Generally, temporal encodings are

superior for encoding order. Significantly, R. Anderson (1976) found the superiority of temporal encodings

greater for words than pictures. Healy (1975) found phonemic encoding only for temporal presentation.

Mandler & Anderson (1971) argue that when temporal and spatial presentation is confounded, subjects set up

two independent and additive codes. In sum, it seems very improbable that one will be successful in trying to

argue that a temporal code is just a degenerate case of a spatial code.

Insert Figure 3 about here.---- ---- ---- ---- ---- ---...-- "--- "---
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Storage and Retrieval

Temporal strings are storcd in long-term memory according to their phrase units and they are retrieved in

phrase units. The work of Johnson (1970) has nicely documented the memorial consequences of this

hierarchical phrase structure. By various spacing techniques he was able to control the phrase structure of

arbitrary strings of letters. He found high conditional recall probabilities across phrase boundaries such that

once into a unit, recall of one member was very predictive of recall of another. However, in transitions across

boundaries there was much less predictability in recall.

The phrase structure units of temporal strings appear to be instances of what I (Anderson, 1980) have called

cognitive units. Cognitive units are encoded into long-term memory in an all-or-none manner and are

similarly retrieved. This means that all the elements of a phrase structure unit will be recalled or none will be

recalled. This would certainly impose the high conditional recall probabilities noted by Johnson. However, it

does predict a stronger within-phrase contingency than found by Johnson -- essentially, recall of one element

should imply perfect recall of all other members. In fact. various complications can serve to degrade all-or-

none recall to some-or-none recall as found by Johnson. This will be discussed later in this article after

further assumptions about representation have been established.

Pattern Matching: Degree of Match

Much of the distinctive character of temporal strings becomes apparent when we consider the processes by

which temporal patterns are matched. In the production system framework this comes down to issues of how

production conditions are matched to data that is in working memory. An interesting situation occurs when

the system has to process some data that partially matches a well-known pattern. There are strong

asymmetries in speed and success of recognition. One of the strongest effects has to do with the importance

given to the beginning of the string. Thus, "JVLV" is much better for calling to mind "JVLVB" than is

"VLVB". This property of temporal strings was capitalized upon in the research of Tvcersky and Kahneman

(1974) who found subjects thought more words began with . than had K in the third position. Apparently, it

is easier to find patterns which match K---- than which match --K--.

SThs 

p
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A New Experiment. We have recently completed in our laboratory a relatively systematic investigation of

the sequential dependencies that exist in matching strings of letters. We had subjects commit to memory 10

paired-associates consisting of four-consonant strings paired with a digit from 0-9 (e.g., XRDT-7). Each digit

was used once, 0 ver the 10 consonant quadragrams, each of twenty consonants (Y was excluded) occurred

twice. The material was also designed so that each pair of consonants occurred uniquely in a single

quadragram. In the initial learning phase, subjects were asked to recall digit to quadragram (XRDT-?) and

quadragram in correct order to digit (? -> 7). They were drilled in this manner until they had made each type

of recall to each pair successfully four times.

Subjects were then transferred to the reaction time phase of the experiment in which they saw two, three, or

four letters and had to indicate what suing this was by pressing the appropriate digit. The letters could occur

in any order. From a given string there were 24 possible distinct 4-letter probes, 24 3-letter probes, and 12

2-letter probes. Over the course of the reaction time phase subjects judged every possible probe for the 10

original quadragrams--for 600 trials in all. So, for instance, included among the 60 probes for the above pair

would be RXDT ->, XTR ->, and DR ->.

We were mainly interested in the speed with which the subjects could recognize these transformed letter

strings and reca the digit. Undoubtedly, they would be relatively fast for the strings that reproduced what

they studied (i.e. XRDT->), but the question was what other patterns would serve to quickly retrieve the

string from memory. This would tell us something about the properties of the production pattern matcher.

To be explicit, we assumed that the response of the subject was governed by productions on the order:

IF the probe is the string (LVA LVB LVC LVD)
and LVA, LVB. LVC, and LVD are associated to response LV#

THEN press LV#

The critical issue concerns how the second clause in the condition is matched. Our hypothesis was that there

would be a substantial front-anchoring cffctL That is, if the first letter in the probe (LVA) matched the first

letter of a stored string, subjects would be fast independent of order in the rest of the probe. However, we

went into the expcrimcnt with fairly open minds about what we would find. By using all possible orders and

all possible subsets, we tried to assure we would be able to detect any trend in the data.

........ . .. ..... ...... ..__ ............._-_____ .__ ,___________________-_-___,_...,__..... ,.. 4
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Table 3 presents the data from the experiment classified according to the position of the first two letters in

the original string studied and according to length of string. So, for instance, if XRDT had been the original

study string, the probe DXT- would be as a 3-tuple whose first letter occurred in position 3 of the original

string and whose second letter occurred in position 1. There was little effect of the study positions of the third

and fourth letters on judgment time to 3-tuples and 4-tuples which is why I have averaged over that factor.

Subjects are nonetheless faster and more accurate to 3-tuples and 4-tuples than 2-tuples. This is interesting in

its own right but for current purposes the interesting phenomena concerns how judgment time varied as a

function of first and second letters. Subjects are clearly faster when the first letter of the test string was the

first letter of the study string. They were also somewhat faster in the first letter match condition if the second

letters of test and study strings also matched. Subjects were somewhat worse when the first test letter was

taken from the fourth position than when it was taken from second or third study positions. Outside of this

there seems no other systematic effects. Thus, this experiment does nicely demonstrate the strong front

anchoring and order dependence in matching strings. Somewhat similar results have been reported by

Angiolilio-Bent & Rips (1981).

Insert Table 3 about here.

Angiolilio-Bent & Rips (1981) propose that the important variable is distance the letter in the probe is

removed from its position in the target. This explains the front-anchoring effect but also predicts numerous

effects that do not obtain in our data. One such prediction is that there should be an end-anchoring effect for

four-uples as large and the front anchoring effect. The best way to test this is to contrast 4-element probes

that are identical in first two positions but differ as to whether they end with the last letter of the study string

and to contrast probes that are identical as to last two position but differ as to whether they begin with the first

letter of the study string. The first contrast tests for end-anchoring. The difference between end-anchored

and not-end-anchored probes is 1.62 vs. 1.68 sec. The second contrast tests for front anchoring. The

difference between front-anchored and not-front-anchored probes is 1.57 vs. 1.74 sec. Thus, while there may

be some cnd-anchoring effect, the front-anchoring effect is nearly three times as large. Angiolillo-Bent &

Rips data can similarly be analyzed to show a stronger front-anchoring effect but the contrast is not as sharp.



Table 3
Mean Reaction Times in Seconds and Error Rates (in parenthesis) for

the String Naming Experiment

Location Location 2-wples 3-tuples 4-tuples Mean
of First of Second
Letter Letter

1.77 1.62 1.55 1.65
1 2 (.08) (.06) (.05) (.06)

2.18 1.67 1.56 1.80
1 3 (.13) (.04) (.03) (.07)

2.21 1.78 1.61 1.87
1 4 (.09) (.07) (.05) (.07)

2.46 1.93 1.66 2.02
2 1 (.15) (.08) (.03) (.09)

2.49 1.89 1.71 2.03
2 3 (.14) (.04) (.05) (.08)

2.63 1.90 1.72 2.08
2 4 (.12) (.09) (.05) (.09)

2.60 1.85 1.75 2.07
3 1 (.12) (.07) (.06) (.08)

2.48 1.84 1.68 2.00
3 2 (.11) (.07) (.04) (.07)

2.20 1.92 1.64 1.92
3 4 (.12) (.09) (.04) (.08)

2.65 2.05 1.80 2.17
4 1 (.17) (.06) (.06) (.10)

2.53 2.04 1.83 2.13
4 2 (.17) (.07) (.05) (.10)

2.49 1.98 1.76 2.08
4 3 (.19) (.06) (.06) (.10)

2.39 1.87 1.69 1.99
Mean (.13) (.07) (.05) (.08)
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It should be notcd that this analysis of string-matching has been purely descriptive. That is, I have simply

noted the strong front-anchoring effect without proposing a mechanism. This is not to imply that it is not

reasonable to attempt a mechanistic analysis of the phenomena as in Angiolillio-Bent and Rips. However, it is

not essential for current purposes. The goal here is to show that string pattern-matching is sensitive to

properties that image pattern-matching or proposition-pattern matching is not. Later sections will provide

evidence that image and proposition matching do not show strong front-anchoring effects.

In the current enterprise, I have taken a mechanistic theoretical framework (i.e. the ACT production

system) that is decomposed down to the level of descriptive properties of the string pattern-matcher. Like

Angiolillio-Bent & Rips, one could try to decompose the mechanistic analyses fruther. but one does not avoid

the need to assign descriptive properties to the primitives. In their case, they assume match time for an

individual letter in a probe increases with displacement. Thus, they have decomposed a descriptive statement

about string matching into a series of descriptive statements about letter matching.

Pattern Matching: Emergent Properties

Sometimes when we are trying to match a pattern against a data structure, the pattern completely specifies

the data structure. Sometimes. however, the pattern is only testing for a certain property of the data structure

which does not uniquely specify the data structure (or said differently, more than one data structure could

have this same property). As a simple example concerning word spelling, contrast checking the complete

spelling of a word versus just testing if it begins with the correct letter. Intuitively, it would seem easier to

determine that "ILLUSTRATION" begins with I than that it is spelled correctly in all places. It might seem

only "logical" that partial information can be matched more rapidly complete information, but often this is

not the case. Consider two examples from spelling: First. it is harder to verify set information than sequence

information although set information is just part of sequence. That is, it is hard to decide LINOSRTAU

contins all the letters in ILLUSTRATION than to decide ILLUSTRATION matches both set and sequence

information. Second. it is harder to verify that a word is spelled correctly in cvcry second position than that a

word is verified correctly in all positions. That is. it is hard to decide about the correctness of

IX LXSXRXTXOX.
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When it is easier to verify a partial property about a data structure than the full pattern specification, we

have an instance of an emeracnt property. Some of the clearest differences among data types concern their

emergent properties. Among the interesting emergent properties of temporal strings concerns the ability to

judge the order of two elements from a string and the ability to retrieve the next element in a string. While

these properties can be judged much more rapidly than the full string, it is not the case that either property is

judged in constant time. There are important factors affecting the speed with which these judgments can be

made and these factors serve to give strings further unique process characterization.

Retrieval of the Next Element. There is an obvious analogy between temporal strings and lists from

programming languages. One of the features that characterize lists is the calculation of the next element.

Most list implementations provide most rapid access to the front of the list and subsequent members are

retrieved by chaining through a series of nexts. The same seems true of strings. Sternberg (1969) documents

that for short strings the time to calculate the next element depends on the position of the item in the list with

later items taking longer. When it comes to longer, hierarchically structured strings, the main factor is

position within the subphrase (Klahr. Chase, & Lovelace, submitted). The next operation would appear to be

a clear distinction between a string and a spatial image. Without a direction, the next element in a multi-

dimensional spatial image is not specified but even with a direction specified. Kosslyn (1980) has shown that

retrieving the next element a function of the physical distance between the objects.

Order Judgments. A frequent task is to judge the order of two elements from a string. This would be

accomplished in a production system by the use of special match predicates for order. So, for instance, the

following production would directly retrieve the answer to a question of whether A is before D in the string

ABCDEF:

IF asked whether LVX is before LVY
and LVX is before LVY

THEN respond yes

Thc second clause being matched in the condition "LVX is before LVY" requires direct access to information

about order in the string. Thcre has been a great deal of work on linear orderings (e.g., Potts. 1972, 1975;

Trahasso & Riley, 1975) suggesting that such order information is emergent and that one does not have to



18

chain through the intermediate terms between A and D to determine their ordering (i.e., it is not

implemented as a series of nexts). In these experiments subjects learn a linear ordering by studying a set of

pairwise orderings--for instance, A is taller than B. B is taller than C, C is taller than D, D is taller than E, and

E is taller than F. Despite the fact that subjects only commit to memory the adjacent pairings, judgments are

easier to make the farther apart the elements are. These results are generally taken as evidence against a

propositional encoding for linear order information.. These judgments can be made over very long strings

which require hierarchical encoding (Woocher, Glass, & Holyoak, 1978). One still gets the same distance

effects. Thus, it seems the emergent information about ordering is not restricted to a single phrase level in the

hierarchy; rather one can judge the order of any two elements in the hierarchy.

It should be noted here that I am not proposing a mechanism for the extraction of such linear ordering

information. Again. I am just noting a property of the pattern-matcher which serves to distinguish treatment

of strings from other knowledge representations. However, there is no shortage of proposals about how these

linear ordering judgments might be performed. For a recent discussion of these proposals see Holyoak &

Patterson (1981).

Construction of New Strings

Strings are not only created by encoding the order of events in the environment. They can also be created

as the outcome of internal computation. Thus, we can create a string encoding all the primes under 20: (((1 2

3) (5 7)) ((11 13) (17 19))). This is modelled in a production system by production actions building new

structures. There is nothing in such construction unique to strings. Similar structuring building operations

apply to the other representational types. However, an important property of strings is the ability to modify

an existing string by inserting or deleting an element. So, for instance, we can modify the string above by

inserting a 0 after the 17.

The insertion operation strengthens the correspondence between strings and lists from computer science. It

also shows another reason why it is adaptive that strings be ordinal rather than interval structures. The

insertion operation is only uniquely defined if we have an ordinal structure. The ability to insert is critical in

domains as disparate as transforming an English sentence to solving a detective mystcry! by inserting the

' ,.
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critical hypothetical event.

The complementary operation to inertion is deletion which again the human mind also has great facility

with. This operation makes even clearer the distinction between temporal string and a spatial image. When

we delete an event we do not create a string with a "hole".

It would seem an intriguing topic to consider what the characteristics are of strings formed by insertions

and deletions. A considerable amount of experimental research has been concerned with whether subjects

enjoy positive transfer between lists related by such transformations (for reviews see Murdock, 1974; Young,

1968). Unfortunately for current purposes, that research has confounded detecting such transformations with

using them.

Purpose of Temporal Strings

To review, I have identified some of the properties that distinguish temporal strings from other knowledge

representations. It is noteworthy that many of their unique properties are just what one would associate with

lists in a programming language like LISP. Like lists, they encode order and not interval information and

they show a strong primary effect in that they can only be accessed from the front. Like lists they seemed

designed to permit access to the next element, and to permit insert and delete operations. The one property

we considered which is unlike most list structures concerns emergent information about order. Also unlike

lists it is possible to index the list from a member (e.g., what list does February occur in?). However, this

double-linkage (from element to cognitive unit and from cognitive unit to element) is not something that

distinguishes strings from other representational types.

Like list structures in programming language, temporal strings exist to facilitate certain types of common

mental computations. They facilitate these computations because of the unique array of processes associated

with them. If it was necessary to develop list-processing languages to facilitate progress in Al, we can be sure

it was necessary for the human mind to evolve temporal strings to facilitate natural intelligence.
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Spatial Image Representation

Encoding and Notation

Spatial images are structures that preserv the configuration of elemcnts of a spatial array. My current best

guess is that an image is isomorphic to the array up to a size transformation. That is, it encodes configural

information but not absolute size. The experiment by Kubovy & Podgorny (1981) supports this claim. They

presented their subjects with a pair of random polygons and had subjects judge whether they matched in

shape. Same shape polygons could vary in the dimensions of size and rotation in the plane. They found a

large effect of rotation on judgment but no effect at all of change in size. This is just what is predicted from

the image representation proposed here. That is, the image preserves information about relative position and

not absolute distance or size. Unfortunately, as Kubovy & Podgo niy note. effects of size transformation have

been found by other researchers. The experimental issue is tricky because size effects would be expected to

whatever degree subjects were making their judgments in terms of position of the stimulus relative to a larger

framework that did not increase with size of the stimulus. In this case, the overall configuration would change

with size. Until the experimental issues are resolved. I can only say that the Kubovy & Podgorny results are

the ones that should obtain in the right situations if the theory of imagery being presented here is correct.

The current proposal to have images preserve orientation and not size is based on my own intuitions about

what is important about a spatial image and what I seem to preserve in my images. I need to recognize

patterns under changes of size (e.g., different size print) and seemingly do so with ease. On the other hand,

objects can change identity under rotation (e.g., a Z becomes an N; a square becomes a diamond) and I

experience subjective difficulty in making matches that have to correct for rotation. However, it also needs to

10jmV /all
be stressed that no major claim in this papf rests on the gji 'that images do not encode absolute size. Far

from that. the tri-code proposal would be strengthened if it could be shown that images did code absolute size

in their structure. It is fairly clear that absolute size is not encoded in temporal strings or abstract

propositions.

A notation for expressing spatial images is somewhat awkward for scientific discourse and much of the
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debate over image representation has rcally been motivated by this awkwardness in notation. Figure 4

presents possible encodings and various notations for their spatial images. We can use the actual stimulus

(part a), but then we must realize that only the position of the objects and not their exact visual detail is to be

taken seriously. Because of working memory limitations one could not encode all the details of all three

objects in a single image. If the visual detail is encoded it must be done by means of subimages. It is

ambiguous in Part (a) whether the detail of the objects is encoded at all. Parts (b) and (c) of Figure 4 illustrate

that ambiguity. In both figures we just have letters in the array which are tokens for the parts, but in part (b)

these tokens point to subimages that encode the visual detail while in part (c) there are only categorical

descriptors. In part (b) each of these subimages would have an encoding as to their subparts. The full

encoding in part (b) including subimages allows judgments such as whether the triangles are equilateral. Part

(d) of Figure 4 gives an alternate encoding of part (c) in which the array is reduced to coordinate information.

Part (e) shows a loose English rendition of the image information. I do not want to prescribe the correct

notation here. but rather simply want to suggest that choice of notation depends on purposes. Clearly, one

needs a notation that encodes saliently the information being used by the processes operating on the

representation. So, if one is concerned with processes that operate in the position of subelements then (d),

where that information is explicit, is to be preferred to (c) where it is implicit. Whatever the choice of

notation, it should not obscure what the image really is -- information about the spatial configuration of a set

of elements.

Insert Figure 4 about here

Parts (b) and (c) illustrate the use of categorical and substructure information that we already saw with

respect to string representations. Note it is possible to use this substructure representation to embed images

within images to arbitrary depth. Thus, an important part of this proposal is that images can have a

hierarchical character. It is also possible to have attribute information when, for instance, we represent the

color of an object in an array. Also, size information could be stored with an image as an attribute.

It is important at times to have the ability to embed a token Aithin an image. The structure of the token
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can be unpacked by other images and/or propositions. The spatial image is under the same capacity

limitations imposed by working memory as are temporal strings. That is, in a single image unit it is possible to

encode the relative positions of a limited number (definitely less than 7) of objects. One consequence of

embedding tokens in an image is that it is possible to have very accurate information about the spatial

configuration of the objects in a scene with very little information about the configural properties of the

objects themselves. This is an important way that these spatial images differ from true pictures. Of course,

this possibility sits well with most people's experiences of imagery -- for instance, the notorious zebra without

stripes (Bower, 1972) or Pylyshyn's (1973) image of a room scene. It also is in accord with results such as

those of Navon (1977) that one can identify the configural properties of a structure before the components.

So. in Bower's example, we might represent the zebra in terms of the relative position of head, legs, body,

and perhaps a stripe or two without specifying all the stripes. In Pylyshyn's example we may specify the

location of the lamp in the room and of other furniture, without specifying the details of the furniture. In

these cases it is possible (optional) to have more detailed information in a subirnage pointed to from the whole

image--a subimage of the face with stripe information or of the lamp. In accord with Navon, however, it will

take longer to retrieve the derail because the subimage must be retrieved from the whole image.

This hierarchical representation of the image is basically in accord with other hierarchical proposals such as

that of Marr & Nishihara (1978) or Hinton (1979). These proposals differ from the current one basically in

pursuing technical issues to levels of detail not important to the points to be made here.

Kosslyn (1980) has made a distinction between propositional representations and quasi-pictorial

representations for images. His book presents a detailed development of a quasi-pictorial theory. It is clear

that what is being proposed here (as, indeed, what is proposed by Marr & Nishihara or by Hinton) is a hybrid

by Kosslyn's classification. Like a propositional representation, this has a clear structure with relations (the

spatial configurations) and arguments (the elements). Like a quasi-pictorial representation, it preserves

information about shape and has a non-arbitrary relation to the object represented. Unlike a proposition, it

has in no clear sense syntax or truth value. Unlike an image. it does not have size as an inherent property.
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Given the overall purpose of this paper, it would clearly be a digression to get into a point-by-point,

experiment-by-experiment accounting of why this hybrid model is to preferred to a pure propositional or a

pure quasi-pictorial. Some of the evidence is discussed here and other evidence is reviewed in sources like

Anderson (1980a) or Hinton (1979). In most general terms, images have been shown to have both strong

structural and strong quantitative properties. Hybrid proposals such as this are efforts to acknowledge this.

In fact, Kosslyn tries to deal with the structural properties of images by proposing auxiliary propositional

representations and distinguishing between skeletal vs. elaborated images. Most important for current

purposes, however, is that this hybrid representation identifies process-properties of images which have no

correspondence in the other two representations.

The encoding process involves a faithful representation of the spatial relationship of objects in the

environment up to transformations of scale. As in the case with temporal strings, a rather sophisticated

pattern recognition process is being assumed for object segmentation. Thus, an image of a scene is in no way

a point-by-point representation of the scene (unless the scene only consists of a few dots). For instance, the

objects in an image of a square might consist of the lines and corners where the lines and corners are the

elements whose relative spatial location is represented but whose visual detail is not unpacked in the image.

Imaging the above mentioned square would require maintaining eight objects (four sides, four corners) in

working memory. This might exceed the capacity of working memory. Phenomenally, I have considerable

difficulty in holding a square in working memory with its four sides and four corners. It is my experience that

I can only hold in my "mind's eye" some parts or aspects of the image in sharp focus, but that other

components can be quickly produced upon demand.

The Santa Study. The basic claim is that images encode information about a spatial configuration Whereas

strings do not. By spatial configuration I mean to denote both multiple dimensions and ordinal information

about inter-element differences. Both of these are lost in the sequential structure of a string. The study by

Santa (1977) nicely illustrates this basic difference between matching of images and temporal strings. The two

conditions of Santa's experiments are illustrated in Figure 5. In the geometric condition (part A of Figure 5),

subjects studied a spatial array of three geometric objects, two geometric objects above and one below. As the

., d -- ".
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figure shows, this array had a facelike property--without much effort one can see eyes and a mouth. After

subjects studied it, this array was removed and subjects were immediately presented with one of a number of

test arrays. Various possible test arrays, given the study array, are illustrated in Figure 5A. The subjects' task

was to verify that the test array contained the same elements, though not necessarily in the same spatial

configuration, as the study array. Thus, subjects, having seen the study array, should respond positively to the

first two arrays in Figure 5A and negatively to the other two arrays. Interest was focused on the contrast

between the two positive test arrays. (There were other positive test arrays, not illustrated, that presented the

three items in different orders). The first array is identical to the study array, but in the second array the

elements are arrayed linearly. Santa predicted that subjects would make a positive judgment more quickly in

the first case where the configuration was identical, since, he hypothesized, the visual memory for the study

stimulus would preserve spatial information. The results for the geometric condition are displayed in Figure

6. As can be seen, Santa's predictions were confirmed. Subjects were faster when the geometric test array

preserved the configuration information in the study array.

Insert Figures 5 & 6 about here.

The results from the geometric condition are more impressive when they are contrasted with the results

from the verbal condition, illustrated in Figure 5B. Here subjects studied words arranged in spatial

configurations identical with geometric objects in the geometric condition. However, because it involved

words, the study stimulus did not suggest a face or have any pictorial properties. Santa speculated that

subjects would encode the word array into a string according to normal reading order--that is, left to right and

top to bottom. So, given the study array in Figure 5B. subjects would encode it "triangle, circle, square."

Following the study stimulus, one of the test stimuli was presented. Subjects had to judge whether the words

in the test stimulus were identical with those in the study stimulus. All the test stimuli involved words, but

otherwise they presented the same possibilities as the tests in the geometric condition. In particular, the two

positive stimuli exhibited a same configuration and a linear configuration, respectively. Note that the order in

the linear array is the same as the order in which Santa predicted subjects would encode the study stimulus.

Santa predicted that. since subjects had encoded the words linearly from the study array, they would be fastest

• . z _ .. : - i _: .... . .. . .. ... ... _ . : ,' ... ." i -, .. ' - : ..
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when the test array was linear. As Figure 6 illustrates, his predictions were again confirmed. The verbal and

the geometric conditions display a sharp interaction.

Storage and Retrieval

According to the theory presented here, these image units should be stored and retrieved in the same

all-or-none manner that is true of string phrases. This means that if we looked at image recall, we could see

the same chunking that Johnson (1970) observed in his research. To my knowledge, such research has yet to

be done except in the domain of chess and go (Chase & Simon, 1973; Reitman, 1976) where this basic

prediction has been confirmed.

Pattern Matching: Emergent Properties

It has been frequently noted (Kosslyn & Pomerantz, 1977; Paivio, 1977) that spatial images appear to bring

with them a host of emergent properties. Just as it was possible to directly test for the order of two objects in a

temporal string, so it appears possible to directly test in an image for the distance between two objects.

direction between two-objects, and whether two objects overlap.

An example by Simon (1978) illustrates the emergent property of overlap judgment:

Imagine but do not draw a rectangle 2 inches wide and 1 inch high, with a vertical line cutting it

into two 1-inch squares. Imagine a diagonal from the upper left-hand comer to the lower right-

hand comer of the 2 X 1-inch rectangle. We will call this line diagonal A. Imagine a second

diagonal from the upper right-hand comer to the lower left-hand comer of the right square. Do

the two diagonals cross?

The answer to this question appears to be immediately available.

Another emergent property of an image is the ability to make judgments about the rclativc position of two

objects. For instance, Maki (1981), Maki, Maki, & Marsh (1977) have looked at subject ability to make

north-south or east-west judgments about the position of cities on a map. This is like the work on judging

ordering in linear arrays which I attributed to a string representation. Like the work on linear orderings these

judgments arc faster the further two cities are apart. However, there appears to be an important difference.

Judgments of distance appear to be affected by the hierarchical structure of die picture. 'Thus, distance effects
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disappear for pairs of cities that cross state boundaries (Maki, 1981). Stevens and Coupe (1978) have shown

that these judgments can be severely distorted due to the hierarchical character of image representation. For

instance, they documented the frequent misconception that Reno is east of San Diego. This derives from the

fact that Nevada is east of California and the location of the cities is represented with respect to these states.

On the other hand, judgments of linear ordering seem unaffected by attempts to impose a hierarchical

structure (Woocher, Glass, & Holyoak, 1978).

Pattern Matching: Degree of Match

The Santa study illustrated that rate of matching is affected by the spatial configuration of a series of

objects. It is also affected by the interval properties of the figure. Speed of pattern matching seems to be a

continuous function of the degree of distortion between the pattern configuration and the data to be matched

(Posner & Keele, 1970). This is something quite unlike what is seen with matching of strings or with

matching of propositions.

Another unique feature of image pattern matching is that a data structure can be matched to a pattern

solely on the basis of a match in the configuration of its elements even when the elements themselves do not

at all match the pattern. So, for instance, without trying we see the structure in Figure 7 (adapted from

Palmer, 1975) as a face. This contrasts sharply with temporal strings where it is unlikely that one string of

elements will evoke recognition of a completely different string. Of course, one-dimensional strings without

interval structure do not permit the same variety of configural properties as do images and so lack much of the

uniqueness of an image configuration.

Inscrt Figure 7 about here.

Image Construction

As with strings, we can synthesize new images by combining old ones--for instance, we can imagine a

triangle on top of a square, our friend on an elephant, or a line between two points. In each of these cases, the

larger image is constructed by specifying the location of one subimage relative to the other--for example, we

might specif, that the bottom line of the triangle be identical with the top line of the square. Images so



6



27

constructed have the same hierarchical character as phrase units constructed out of sub-phrases.

The hierarchical character of a synthesized description may not correspond to the description that would

have been derived had the synthesized object been directly perceived. This is because the hierarchical

organization produced by direct perception can be different than that forced by synthesis. This is illustrated

by the synthesis problems in Figure 8. In each case it is difficult to identify the object formed by the

synthesis. For instance, part (b) is hard to perceive because separate line segments in the parts become single

lines in the whole. This informal example agrees with the more careful studies of Palmer (1977) who showed

that the ease of recognizing synthesized objects depends critically on whether the subunits to be synthesized

correspond to the units the whole object would naturally be segmented into. Thus, the image representational

system allows different descriptions for the same object.

Insert Figure 8 about here.

In this framework, image rotation becomes a special case of image construction. A new image can be

constructed as a small rotation of another. The sort of production that performs rotation would match the

to-be-rotated image in its condition and performed the rotation in its action. It would create a new image in

working memory slightly rotated. Iterative application of this production would achieve further rotation. I

infer from the literature on rotation that images can only be rotated small amounts at a time. Note that this

feature indicates that the image is a distinct representational type in that small incremental rotation only

applies to images, but the feature says nothing about the correct notation for describing images.

A Production System for Mental Rotation. Because of the important position of the research on mental

rotation in discussions of imagery and because it is frequently thought that production systems and imagery

processes are incompatible, it would be useful to display a production system that is actually capable of

simulating the Shepard and Metzlcr (1971) task. This production system will have the further advantage of

showing how different types of representation can be coordinated within one set of productions--indeed,

within one production. This production system will borrow heavily from the proposal of Just and Carpenter
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(1976) although it is not identical to that proposal.

A major issue with the Shepard and Metzler figures is whether they are rotated as single objects or whether

they are rotated and moved in pieces. Just and Carpenter claim they are rotated and moved in pieces. There

is nothing critical to the piecemeal analysis because, as we will see, the piecemeal analysis assumes rotation

operations on the fragments identical to those that the wholist analysis might want to propose for the full

objects. However, it makes for a more interesting production system model to assume a piecemeal analysis

and so I will. It may well be the case that inexperienced subjects, like those used by Just and Carpenter, rotate

these figures in fragments whereas experienced subjects, like those used by Shepard and Metzler, rotate whole

figures. I, a relative novice at mental rotation, have introspective experiences quite close to the pieemeal

analysis modelled here.

I will assume that an image of one of these figures is hierarchically organized. Figure 9 illustrates how the

overall figure is hierarchically decomposed into subfigures. The figure is analyzed into two overlapping

elbows (sub-figures) and each elbow is analyzed into two overlapping arms (sub-sub-figures). I will assume

that, for purposes of rotation, the arms need not be broken into individual cubes.

Insert Figure 9 about here.

Just and Carpenter identify three substages in the matching of these figures. The first substage involves

finding parts of the two figures that correspond. The second stage involves rotating the part of one figure into

congruence with the end part of the other figure. What this substage really accomplishes is to begin creation

of an image which is the rotation of one figure. When completed this image will be matched to the other

figure. The third substage completes construction of this image by moving copies of the remaining pieces of

the figure to the image and testing for congruence. Just & Carpenter suggest that this third stage can either

involve rotation or not: my model will assume no rotation for this third stage. Just and Carpenter call these

stages search, transformation, and confirmation. My analysis maintains these distinctions but breaks each

stage down into more information-processing detail.
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Appendix II provides a detailed specification of the production system and its application to a problem.

That production system will take two figures and try to create an image of one rotated into congruence with

the other. Figure 10 is a summary illustration of the operation of that production system. It represents the

two figures presented, the focus of attention on each figure (the shaded areas), and the contents of the mental

image. The simulation starts out focusing on the two upper arms. In Figure 10b an image of the upper arm of

object 2 is created and by a series of rotations it is transformed into congruence with the upper arm of object 1

(Figure 10c). When an attempt is made to attach the other arm in the upper elbow a mismatch is uncovered

(Figure 10e). This leads to the abandoning of the attempt to make a correspondence between the upper parts

of the two objects.

In Figure 10f an attempt is made to create a correspondence between the lower elbow of object 2 and the

upper elbow of object 1. In Figure 10g an image is created of the lower armi of object 2 and it is rotated into

congruence with the upper arm of object 1. Then in Figure 10h-101, the various arm fragments are attached

until a complete image is achieved. This production system predicts an effect of rotation angle in two places.

First, greater angle increases the likelihood of false starts as illustrated in Figures 10a-10e. Second, a number

of iterative rotations are required to align the initial segments (Figures 10c and 10g). The production system

also predicts an effect of image complexity in terms of the number of separate pieces that need to be image4

(Figures 10b-101).

This example illustrates that an imagery process is compatible with a production system architecture and

that the distinct character of imagery derives from the distinct production processes it assumes. To the best of

my knowledge, it is in fact an accurate model for the empirical phenomena. It clearly does predict the basic

rotation result. It is consistent with the qualitative eye movement data of Just and Carpenter (1976). The

theory makes an interesting set of predictions about the relationship between complexity and rate of rotation.

As complexity will map onto number of subparts, there will be a complexity effect on judgment time.

However, the actual rotation operation is only performed on a single part. Thus, there need not be an

interaction between complexity and rate of rotation. On the other hand, greater complexity of the stimulus or

greater angle of rotation can result in more false starts where the system starts out with one correspondence

.i.
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and must try another. Thus, in situations where there is not a clear basis for anchoring the correspondences,

there would be a multiplicative relationship between complexity and angle of rotation. This is a rather

complicated prediction but it is at least consistent with the complicated and superficially contradictory

empirical picture that exists about effects of complexity on rate of rotation (Cooper & Podgorny, 1976;

Carpenter & Just, 1978; Pylyshyn, 1979; Shwartz, 1980). The eye movement data of Just and Carpenter

particularly gives strong support to the idea that effects of angle of rotation are both due to rotation of a single

part and due to false correspondences.

Functional Value of the Image Representation

It is worthwhile to review the properties that justify spatial images as a distinct representation type. They

are the only data objects that encode interval information about a configuration of objects. Correspondingly,

degree of match is a function of distance and configuration. Information about distance, direction and

overlap are emergent properties. Images can be constructed by a rotation operation which has no analog in

any other domain. Kosslyn (ret) has suggested a number of other such properties to distinguish images. Such

processes have enormous adaptive value in dealing with spatial information. The emergent properties make

readily available the kinds of information needed to navigate in one's environment and to process physical

-objects. The image rotation is clearly important because we live in an environment where orientation is not

always constant. It is worth noting here again that many transformations such as shearing and four-

dimensional rotation are not naturally calculated -- and presumably, one seldom comes upon new spatial

configurations in the real world that are related to known configurations by such transformations.

It is also worth noting that, while there are some relatively powerful computational processes available with

images, there are severe restrictions on the kinds of pattern matching that may successfully be performed on

an image. Pattern matching with images is severely upset by changes in orientation or relative configuration

(although not by changes in absolute size). Indeed, the work on mcntal rotation is predicated on just this fact.

Just as matching of strings is strongly governed by order and first elements, so matching of images is strongly

governed by relative position. The pattern-matcher thus structures itself differently to deal with different

representations.
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Abstract Propositional Representation

Encoding

Abstract propositional representations are in sharp contrast to temporal strings and spatial strings in the

way they encode the information. First, they are abstract in that the code is independent of the order of the

information in the environment. For instance, the propositional representation (hit John Bill) does not

encode the difference between John it Bill and Bill was hy John. Encoding a scene of John h Bill

the propositional representation does not code who is left and who is right. Second. it is abstract because it

identifies certain elements as critical and ignores all else. Thus, the encoding of the scene may ignore all

physical details about such things as John's or Bill's clothing.

One of the principle lines of empirical evidence for propositional representations comes from the various

sentence memory studies that show semantic variables and not the word structure of the original sentence are

predictive of memory performance. This research includes the long tradition of experiments showing that

memory for gist is better than memory for wording (e.g., Begg, 1971; Bransford & Frank, 1971; Sachs, 1967;

Wanner, 1968) and the experiments that show the best prompts for recall of a particular word in a sentence

are other words which are semantically close (Anderson & Bower, 1973; Lesgold, 1972). Similar

demonstrations have been offered with respect to picture memory (Baggett, 1975; Mandler & Ritchey, 1977)

-- that is, it is the underlying semantic relations that are predictive of memory. In reaction against this

research, there have been experiments which have demonstrated good memory for wording of sentences

(Graesser & Mandler, 1975) or good memory for visual detail that is not semantically important (Kolers,

1978). However, these observations are not troublesome for the multi-representational position being

advanced here although they can be embarrassing for the pure propositional position that has been advanced.

What is important for current purposes is that there are highly reproducible circumstances where memory is

good for the meaning of a stimulus event and not for the physical details of that event. To account for these

situations it is necessary to propose a representation that extracts the significant semantic relationships from

these stimuli. To account for situations that show good memory for detail one can use the temporal string or

image representation.



32

Another distinct feature of abstract propositions is that there are strong constraints among the elements in a

proposition. Thus. hit takes two arguments, &Lve three, know must have one of its arguments be an embedded

proposition. There is nothing like ,his with strings or images. One element of a string or image does not

constrain what the other elements might be. Images and strings encode directly what is out in the world and

basically any combination is logically possible. On the other hand propositions represent relational
has

categoizations of experience and the mind )only learned to see certain patterns.

As with the other representations, the true significance of the abstract propositional representation becomes

apparent when we specify how it is treated within the production system framework. Unlike the encoding

processes for temporal strings or spatial images, the structure of an abstract proposition is not a direct

reflection of environmental structure. Rather its encoding reflects an abstraction of an event and the

encoding process itself is something that must be learned. This is clear with respect to language where each

child must learn the processes of comprehension (sometimes innocuously called a "parser") for his particular

native language. However. similar extraction processes must be at work in learning to interpret non-linguistic

experiences and identify the meaningful invariances (innocuously called perceptual learning and concept

acquisition). Because the propositional encodings are not direct reflections of external structure but are

determined by experience, the representations that have been proposed over the years have tended to have a

somewhat ad-hoc character to them. Until we specify the abstraction processes that underlie the formation of

the perceptual and linguistic parsers, there will be unwanted degrees of freedom in propositional

representations and they will remain as much a matter of intuition as of principle.

Notation. The semantic network notation is very appropriate for representing propositional structures.

Figure 11 shows one such representation. A central node represents the proposition or semantic unit and

links emanating from the central node point to the various elements of the proposition. Labels on the links

identify the semantic relationships. The labelled network notation is appropriate because the links in a net are

ordcr-frec just as arc elements of a proposition. The readcr may recognize such a representation as basically

the structure introduced by Rumelhart. Lindsay. and Norman (1972) in the early days of the LNR model.

Many other more complex network notations exist (e.g. Anderson & Bower. 1973: Norman & Rumelhart,

I ,, ., , . , . . i
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1975; Schank, 1972) and I will discuss some of the issues separating these representations. Kintsch (1974)

introduced a linear notation for representing network structure which is more tractible for large sets of

propositions than is a network representation like Figure 11, but the two notations are equivalent in

information conveyed. In line with remarks made elsewhere in this paper I do not think that the differences

between the various propositional notations are substantial. What is of substance are the various processes

that operate on the representations.

Insert Figure 1 about here

All-or-none Storage and Retrieval

With respect to the storage and retrieval processes, I think it is reasonable to propose that propositions are

encoded and retrieved in an all-or-none manner as I have proposed for strings and images. This is an issue

about which there has been a mild debate (e.g., see Goetz, Anderson, & Shallert, 1981) and I have found

myself on the other side of the issue (i.e. proposing partial memory for propositions). Recently, I (Anderson,

1980) have written an article recanting my position. The basic empirical research involves subjects' memory

for sentential material where it seems reasonable to assume that certain phrases convey basic propositions.

For instance, The doctorshot the lawyer, might be said to convey a basic proposition. It is sometimes observed

that subjects cued for memory with part of a proposition, e.g. the doctor, may only recall back part of the

remainder. This partial recall is a wcl-established fact and numerous theories have been developed to

account for it (e.g. Anderson & Bower, 1973; Jones, 1978). However, a problem is that the dcgree of partial

recall is much less than would be expected under some notions of chance. For instance, suppose we cue with

subject and look at recall of the object conditionalizing on recall of the verb. The observation is that recall of

the object is much higher conditional on recall of the verb than not. Depending on what experiment we cite,

one observes 60% - 95% object recall conditional on verb and 3 - 15% object recall conditional on non-recall of

verb.

I think this cmpirical evidcnce provides weak evidcnce at best on the issue of all-or-nonc mcmory for

propositions and elsewhere (Anderson, 1976. 1980) 1 have tried to unpack the ambiguities. The degree of



1-
U

00



34

all-or-none recall is equivalent to that which lends support to all-or-none recall of phrases in strings. So,

perhaps by a strange principal of equality we should accept the conclusion of all-or-none recall here. In

contrast to the murkiness of the empirical picture, I think the evidence for an all-or-none system is quite

strong from implementation considerations. Our experience in the production system framework has been

that it is very non-adaptive to have partial propositions stored or retrieved. Such partial propositional

information cannot be easily used in further processing and so its retrieval only clutters up working memory,

or worse, misleads the information processing. It seems unlikely that an adaptive system would waste capacity

on such useless, partial information. Thus, this is a case where our general framework can help guide a

decision where the empirical evidence is ambiguous.

Perhaps facts of arithmetic are the easiest examples for purposes of illustrating the impact of partial

encoding. Suppose we stored the proposition (5 = (PLUS 3 2)) as (= (PLUS 3 2)) where the sum has been

omitted in a partial encoding. Clearly, such a fact is of no use in a system. Whether partial encoding leads to

disaster rather just waste depends on one's system assumptions, but suppose one allowed propositions to

encode facts like (6 = (PLUS 3 2 1). Then imagine what a disaster the partial encoding (6 = (PLUS 3 2))

could lead to! The crisp semantics associated with arithmetic propositions makes very clear the consequences

of partial encoding. However, similar problems occur in an inferential system when we encoded (Reagan

defeated Carter) as (defeated Carter) or (Give Mary Bill Spot last-year) as (Give Mary Bill Spot).

Pattern Matching: Emergent Properties

Subjects appear to have an ability

to detect that elements are connected in a propositional representation before they can judge how. The ability

to make connectedness judgments shows up in a wide variety of experimental paradigms. but it would be

useful to describe an experiment from my laboratory which had as its goal to simply contrast judgments of

connccncss with judgments of form. Subjects studied simple subject-verb-object sentences like The lawyer

hated th dotor and then saw test sentences that exactly matched (The lawyer hated the doctor), that had

subject and object reversed (The doctor hated the lawyer). or that had one word change (e.g. The lawyer hated

the sailor. The lawyer kicked the doctor). There were two types of judgments to be made. In the proposition-



Table 4
Mean Reaction Times in Seconds and Error Rates (in parentheses) for
recognizing that a sentence has the same form as an original sentence

versus that the sentence connects the same elements.

Probe Type Judgment Task
Exact Match Connected

Exact Match 1.685 1.573
(.077) (.056)

S-O Reversal 1.759 1.634
(.139) (.074)

Overlap 1.725 1.650
(.083) (.112)

Average 1.723 1.619
(.099) (.081)
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matching condition subjects were asked to recognize if a test sentence conveyed the same meaning #,an

original study sentence. Thus, they responded positively to the first type of test sentence and negatively to the

other two types. In the connectness judgment task subjects were asked if all three words came from the same

sentence. Thus, they responded positively to the first two types of test sentences and negatively to the third

type. The results of the experiments are displayed in Table 4. Subjects responded uniformly more rapidly in

the connectedness condition indicating that they do have access to information about whether a set of

concepts are connected more rapidly than they have access to how they are connected.

Reder & Anderson (1980) and Reder & Ross (1981) also present evidence that subjects are able to make

judgments of thematic relatedness more rapidly than exact connections. In that experiment subjects learned a

set of thematically-related facts about a person - for instance, a set of circus facts about John. Subjects could

judge that a fact related to what they have studied faster than they could judge whether it was studied. So, for

instance, subjects could judge John watched te acrobats was consistent before they could decide it was

studied. I (Anderson, 1983) have proposed that subjects make this relatedness judgment by detecting a

propositional connection between the probe fact and the facts stored in memory.

In many circumstances this rapid detection of connectivity can interfere with the rejection of a foil. Collins

& Quillian (1972) report that subjects find it difficult to reject Madrid is in Mexico because of the spurious

connection. Glucksberg & McCloskey (1981) have found subjects find it easier to decide that they don't

know a fact like John ha a rfe if they have learned nothing connecting John and rifle than if they have

explicitly learned the fact that 11 j5 no known whether John has A rifle. Anderson & Ross (1980) showed

subjects were slower to reject A a ia a sniLake if they had learned some irrelevant connecting fact like The 01L

cked th snake. King and Anderson (1976) report a similar effect in an experiment in which subjects are

to retrieve cxperimentally-learncd facts.

Pattern Matching: Degree of Match

Because of their non-analog character, there is missing a notion of closeness in the matching of propositions

that is present in the matching of strings and images. The degree of partial match of a propositional pattern is

simply a function of the number of elements in the pattern successfully matched. Also because the elements
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composing a proposition have a set character we do not see the order dependence in proposition matching as

we saw, for instance, in string matching. Subjects are much better able to recognize a substring of elements if

they are the beginning part of the original string. This is not so with propositional material. For instance, in

my research on sentence recognition (Anderson, 1976; Ch. 8) 1 found that any subset of elements from a

proposition is recognized as well as any other subset and order of elements does not matter. Dosher (1976)

reports a similar conclusion.

There is a natural tendency to think of propositions and word strings as really being the same - a single,

verbal representation (e.g. Begg & Paivio, 1969). However, propositions strongly contrast with strings in that

they do not have the order dependency that we find for strings. To illustrate this, I performed the sentence

analog to the experiment reported in Table 2 on letter strings. We had subjects commit to memory location-

subject-verb-object strings like In the subway the dctor helped the writer. Subjects were encouraged to treat

these as meaningful propositions by instructions which required them to elaborate a short story about each.

As in the letter string experiment, subjects also had to associate a digit in the range 0 - 9 to each sentence.

They were drilled in recalling the sentences to the digits until they had given four perfect recalls of each

sentence. Then they were switched to a task where they saw some subset of the four words in the sentence

and they had to recall the corresponding digit. As in the letter string experiment each word occurred in two

sentences but subjects could uniquely identify the digit on the basis of any pair of words.

Insert Table 5 about here.

The results of this experiment are displayed in Table 5 which is to be compared with Table 3 for the earlier

experiment. The data in this cxperiment arc in sharp contrast with that of the string recognition experiment.

Subjects are slowest when the probe begins with the location, the first content word studied in the sentence.

Except for this. there is no apparent effect of elements and little difference depending on whether the

sentence begins with subject, verb. or object. Doshcr (1976) and Goctz. Anderson, Schallcrt (1981) have also

obscrvcd that the location seems not as integrated with the sentence as the other terms. This suggests that

subject, verb, and objcct should be considered an embedded cognitive unit. A higher propositional unit



Table 5
Mean Reaction Times in Seconds and Error Rates (in parenthesis) for the

Proposition Naming Experiment

Location Location
of First of Second 2-tuples 3-tuples 4-tuples Mean
Letter Letter

2.69 3.10 3.11 2.97
1 2 (.05) (.05) (.05) (.05)

2.73 2.80 2.66 2.73
1 3 (.06) (.06) (.04) (.05)

2.84 2.61 2.48 2.64
1 4 (.07) (.05) (.04) (.05)

2.66 2.32 2.21 2.36
2 1 (.06) (.04) (05) (.05)

2.32 2.17 2.16 2.22
2 3 (.07) (.03) (.04) (.05)

2.37 2.25 2.23 2.28
2 4 (.07) (.04) (.03) (.05)

2.28 2.22 2.14 2.21
3 1 (.08) (.04) (.03) (.05)

2.20 2.23 2.12 2.18
3 2 (.04) (.04) (.04) (.04)

2.16 2.01 2.08 2.08
3 4 (.04) (.04) (.03) (.04)

2.38 2.19 2.05 2.21
4 1 (.07) (.04) (.04) (.05)

2.40 2.11 2.08 2.20
4 2 (.07) (.05) (.03) (.05)

2.06 2.01 2.11 2.06
4 3 (.03) (.03) (.03) (.03)

Mean 2.42 2.34 2.29 2.35
(.06) (.04) (.04) (.05)
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connects the location and the embedded unit with a specification that the event described by the embedded

proposition occurred in the location. Curiously, this is like the HAM representation proposed by Anderson &

Bower (1973).

Construction of Propositions

As with images and strings, propositions can be created by combining elements which may be primitive or

may themselves be propositions. However, the relational structure of a proposition imposes a unique

property on proposition construction. The relation takes a fixed number of slots, no more or no less. This

means that when a relation is constructed but not all the arguments specified, the missing arguments will be

filled in by default. Thus, if we hear "Fred was stabbed", we cannot help but fill in a dummy agenL The

various proposals for propositional systems differ in how rich a system they propose for default slots and

inference procedures to fill these slots. So, one feature that tends to accompany proposals for "semantic

decomposition" (e.g., Schank, 1972, Norman & Rumelhart, 1975) is a rich system for inferring the occupants

of various slots. However, all propositional systems by their very nature require some default system for

filling in missing slots. The notation of a missing slot is not a meaningful one for images or strings.

Function of a Propositional Code

Clearly, the distinctive properties of propositions derive from their abstract set-like structure and their

relational structure. People learn from experience which aspects or higher-order properties of an event prove

to be significant and so they develop a code to represent these. There are a number of advantages to such a

code. First. it is more direct and efficient. Rather than representing all the pieces of information that enable

the inference that A has thrown a ball (e.g. A raised his hand over his head, A's hand held round object, etc.)

or the exact words of the sentence that was parsed into this meaning, the significant rclationship is represented

directly. The propositional representation does yield an economy of storage in long-term memory but it has

other advantages probably more significant. For instance, the representation will occupy less space in

working memory and will not burden the pattcrn matcher with needless detail. Thus, it will often be easier to

manipulate (i.c. think about) these abstracted structures.
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General Conclusion

Refer back to Table 2 for a summary of the process features that distinguish the three types of

representation: They encode different types of information, have different pattern-matching principles, and

have different principles of construction. The mere fact that different knowledge is processed differently

would not be so interesting as what is represented in Table 2. The claim there, which was argued at length in

the paper, is that large sets of knowledge have exactly the same differences. For instance, every image differs

from every proposition in just these properties. This is the empirically significant claim in this paper.

One might question whether these processes are really distinct. To consider a wild but instructive example,

suppose someone proposed the following "propositional" model to account for distance effects in judging

relative position in a linear ordering. Each object is given a propositional description that uniquely identifies

its position. So, the string ABCDEFGH might be encoded as follows: A's positicn is 0 followed by 0

followed by 0. B's position is 0 followed by 0 followed by 1, etc. where we basically encode, each position in

binary. To judge the order of two items subjects would have to retrieve their binary encodings and then have

to scan their encodings left to right until a first mismatching digit was found. Then a judgment could be

made. The further the items are apart the fewer propositions that need to be scanned on the average to find a

mismatch. There are numerous challenges that one could make to this proposal but I would like to focus on

one for current purposes. The time to make linear-order judgments (often less than a second) are clearly less

than the times to chain through three propositions in memory (seconds). Thus, there is no way to get the

temporal parameters right for the propositional model. This illustrates an important constraint that blocks

many creative attempts to reduce one process to another, supposedly more basic process. The time measures

for the basic processes must add up to equal the reduced process.

Storage and Retrieval

An intercsting observation about Table 2 is that there appear to be no differences among the three data

types in terms of how they are stored in long-term memory or how they arc retrieved. This means that

memory experiments such as Anderson & Paulson (1978) and others that attempted to find different types

were doomed to failure. For all three types of representation there is a basic unit or storage -- be it the phrase,
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image, or proposition. In each case the size of such a unit is severely limited by the number of elements that

can be kept active in working memory. A unit can be thought of as a form with a number of slots. In the case

of strings, the form is the linear ordering and the slots are the elements ordered. In the case of an image, the

form is the spatial configuration and the slots are the objects configured. In the case of propositions, the form

is the relation and the slots are the arguments of that relationship. In all cases there is a restriction on the

number of slots that a form can have.

The basic claim is that the form plus its slots, while being held in working memory, can be fixated into

long-term memory. If it is so fixated all elements of the form will be deposited into long-term memory.

Hence the process of storage is all-or-none. Similarly, the process of retrieval is all-or-none: If a form is

retrieved back into working memory all of its elements are.

I have suggested (Anderson, 1980) that the term cognitive unit be used for structures that have these storage

and retrieval properties. Thus, all these representational types, strings, images, and propositions, are cognitive

units. I have already reviewed some of the evidence for the all-or-none character c "'memory for these various

representational types. However, it is also the case that in no experiment does one ever observe perfect

all-or-none recall. This leaves the issue of how to explain residual partial recall. I think such partial recall can

be explained by a combination of assumptions about hierarchical encoding and multiple codes.

Because of limits on how much can be encoded into a single unit, large of knowledge structures must be

encoded hierarchically in which smaller cognitive units are embedded within larger cognitive units. It has

been suggested (Broadbent. 1975) that the limitations on unit size are related to the limitations on the capacity

of working memory to access related information in working memory. Basically, for a unit to be fixated into

long-term memory all of the elements must be in working memory and the svae...m.ust be able to uniquely

point to each. Broadbent notes that the number of elements in a chunk correspond to the number of values

one can keep separate on physical dimensions. He suggests that problems with larger chunks might be

"discrimination" problems in identifying the locations of the individual elements in working memory.

One can retrieve an hierarchical structure by a top-down process which he starts with the top structure,
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unpacks it into its elements, and unpacks these, and so on until the terminating elements are reached.

Similarly, it is possible to do retrieval in a bottom-up manner -- stan with a terminating clcmcnt, retrieve its

embedding structure, retrieve the structures that embeds it, and so on until the top structure is retrieved.3

These steps of retrieval can fail. They can fail either because the unit to be retrieved was not encoded or

because it cannot be retrieved.

Figure 12 presents a hypothetical hierarchical structure in which certain X'd units are marked as

unavailable for recall. There are 27 terminal elements. Using a top-down search it would be possible to

retrieve A, B, and C from the top structure, C, D, and E from A; 1, 2, and 3 from C; 4. 5, and 6 from D; the

structure from E is not available; nor is the structure from B; I, J, and K can be retrieved from C; the

structure from I and I are not available, but 25, 26, 27 are available from K. Thus, although each individual

act of retrieval was all-or-none only 9 terminal elements were retrieved from the 27 element terminal array.

Also note that, cued with 10. the subject would be able to retrieve the fragment F and hence the element 11

and 12 but nothing else of the hierarchy. Such hierarchical retrieval would produce the phrase patterns

documented for linear strings (Johnson, 1970); propositional structures (Anderson & Bower, 1973); and story

structures (e.g. Owens, Bower, & Black, 1979; Rumelhart, 1978). To my knowledge no one else has explored

the issue with respect to picture memory; but it would be surprising if such hierarchical recall structures were

not also found there.

Insert Figure 12 about here

If one could segment a to-be-rccallcd structure into its hierarchical units, then one should see all-or-none

recall for the separate units. The empirical phenomena is never as strong as all-or-none recall under such

attempts at analysis. One reason for this is subjects are not entirely consistcnt in the hierarchical encoding

schemes that they adopt. Their hierarchical structure might differ slightly from the one assumed by the

experimenter.

A more important reason for deviation from hierarchical all-or-none recall is that the subject may produce
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elaborations which deviate from the specified hierarchy. For example, consider subject memory for The rich

doctor ec th sick banker. A hierarchical analysis would assign = and dotor together. However, a

subject might elaborate on the connection between rich and hnkr or between doto and si.. Then, in

recall, the subject may recall lid and A= but not rich and banker violating the expected all-or-none

pattern. I have discussed the complications produced by subject elaborations in Anderson (1976). So all we

can expect to see is a tendency in the direction of all-or-none recall. This also means that such empirical

phenomena are only weak support for assumptions about all-or-none memory. I think the stronger evidence

comes from our experience with the non-adaptiveness of partial recall in a production system (Anderson,

1980). As noted before, it is at best useless to retrieve a partial structure and at worst disastrous.

Mixed Hierarchies and Tangled Hierarchies

To this point the discussion has largely assumed hierarchies consisting of units of the same representational

type. However, there is no reason not to suppose that representational types might be mixed and there is

some clear advantage to having this flexibility. If one wanted to represent "John chanted 'one, two, three'", it

is clearly more economical to represent the object of John's chanting as a string. That is, the string would

appear as an element of a proposition. Again. if one wanted to represent the sequence of events at a ball

game, one might want to have a linear ordering of a sequence of propositions describing the significant events.

Strings and images would be mixed if one wanted to represent a spatial array of nonsense syllables, or a

sequence of distinct images. Again we would want a mixture of images and propositions, if one wanted to

encode comments about pictures or encode the position of various semantically-significant objects without

encoding the visual details of the object (e.g. Figure 4c).

Our discussion of these hierarchies has assumed that a particular element or subtrce appeared in only one

hierarchy, but much of the expressive power of the system derives from the fact that hierarchies share

subexpressions creating tangled hierarchies. So, for instance, the same image of a person can appear in

multiple propositions encoding various facts about the person. Hierarchies can overlap in their terminal

nodes also, as in the case of two propositions out of the same concept.

One can have very intcrtangled hierarchies such as Figure 13 which is inspired by the script from p.43 & 44
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of Schank and Abelson (1977). Note that the central structure is a hierarchical suing of events but various

propositions and images overlay this string. In general, I think what Schank and Abelson refer to as a script

will correspond to central temporal string overlaid with embellishing information. Schank's more recent

proposal of MOPs (Schank. 1980) come closer to the generality of this tangled hierarchy concept.

Insert Figure 13 about here

Summing Up
The basic argument put forth in this paper is that, if we make different production system processes the

criteria for discriminating among representations, then a rich array of empirical data point to the existence of

multiple types of data representation. This multiple-types conclusion also seems justified from the point of

view of the evolution of an adaptive system. The majority of this paper was devoted to documenting evidence

for three types of representation and articulating properties of these three representational types. Finally, the

paper concluded that, with respect to storage and retrieval from long-term memory, these three

representations may share ctrong process commonalities. The critical concept for purposes of long-term

memory is the notion of the cognitive unit of representation in which information is stored and retrieved. We

noted that these units could enter into hierarchies of a variety in which different representational types were

mixed. The fact that the three types differ in terms of how the procedural system treats them but are alike in

their treatment by the declarative system, is one further piece of evidence for the utility of the procedural-

declarative distinction that underlies ACT.

I have argued for three representational types on the bases of different processes defined on each.

However, at some level, these processes are not distinct. Probably, they can be decomposed into the same

principles of neural processing. If not, they can surely be decomposed into instantiations of the same set of

physical laws. However, these are clearly the wrong levels of analysis. Our level of analysis is dictated by the

adoption of the production system framework. Within that framework, the basic processes arc those that are

concerned with interfacing declarative and production memory (see Fig. 1) with working memory. Evidence

for this framework is the fact that the processes arc well-behaved in such a framework and lead to a systematic
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identification of representational types.

The evidence for a general framework like the ACT production system architecture, will depend on

whether it is possible to develop successfial theories in that framework. (Note success or failure of a particular

theory is not critical.) The architectural notions are at such a level of abstraction that more direct empirical

evidence is impossible to achieve. So, we have a relationship of mutual dependency between this

representational theory and the production system architecture. The production system framework is to be

evaluated in terms of the success of the theories such as this tr-code proposal and this tricode proposal

depends on the framework for its precise interpretation.

-.- , - .f



Footnotes

This research is supported by ONR contract N00014-81-C-0335 and by grant BNS78-17463 from

the National Science Foundation. I would like to thank Susan Fiske, Keith Holyoak, Stephen Kosslyn,

Zenon Pylyshyn, and Lynne Reder for their helpful comments on earlier versions of this manuscript

and the members of the ACT research group (Gary Bradshaw, Bill Jones, Matt Lewis, Rolf Pfeifer,

Peter Pirolli, and Jeff Shrager) for their discussions of the ideas in this paper. Correspondence

concerning this manuscript should be sent to John R. Anderson, Department of Psychology,

Carnegie-Mellon University, Pittsburgh, Pa. 15213

'in most production systems, matching working memory is not a sufficient, only a necessary

condition for the production to execute. In addition there are conflict resolution principles which

select some or perhaps only one of the concurrently matching productions for execution.

21 use the term tri-code theory rather than tri-representational theory to make it clear that I am

concerned with a very basic level of representation. One could use the term representation to refer to

issues such as whether, in representing the concept of apple, one should include facts such as they

are used for making fruit pie. While perfectly legitimate issues to be concerned with, this is not my

concern here. Rather I am concerned with the code and not the content of the representation. The

term tri-code also, of course, derives as an extension of Paivio's (1971) use of dual-code.

3 As will be discussed with respect to tangled hierarchies a unit may be an element of more than one

larger structure. In this case there is an ambiguity in going up as to which larger structure to retrieve.

The subject must use features such as other elements of the structure or contextual tags to select the

correct structure.



Appendix I

I will first review in slightly more sophisticated form the argument given in Anderson (1976, 1978) that it is

not possible to empirically distinguish between representational notations. Then I go on to show that within

this framework there is a notion of distinct representational types at a level more abstract than that of

notation. The formal argument concerns when two cognitive systems, CS and CS* with different

representational notations would be equivalent. Figure 14 illustrates schematically the processing in these two

systems. In part (a) we have a representation of system CS. It has an encoding process, F, that maps various

stimulus situations (denoted by the Si) into internal structures (denoted by some of the 1I). These internal

representation Ii can be transformed internally into other representations I. by a process T. Finally some of

the internal representations are mapped into responses (R1) by the response process (R). The system CS* has

the corresponding components.

Insert Figure 14 about here.

A theory of representational notation resides in the structure of the description of the internal I. Thus, we

might describe the Ii by relational propositions or by n-dimensional matrices. The choice of such a notation,

by itself, results in no behavior. To have a system capable of observable behavior we must also specify an

encoding process. E, process of internal transformation, T; and a response process, R. The question concerns

under what circumstances can a different representational theory, CS*, with different descriptions of internal

I result in the same behavior as CS. Part (b) of Figure 1 illustrates such a mimicking system. It is possible to

construct E*, T*, and R* for this theory of representation that mimic all the moves of F, T, and R.

Before exploring the issue of when such mimicry is possible it is necessary to become more precise in our

terminology. The framework in Figure 14 glosses over some complexities that will prove important in the

current discussion. First, the internal representation Ii in Figure 14 should be thought of as composed of sets

of units. For instance, one of the encoding operations might be to map a sentence into a set of propositions

representing its meaning. Also. the same set of units will not participate in all operations. Thus, a subset of

the propositions derived from a sentence may join with other propositions to lcad to an inference (an internal
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transformation). This is not easily represented in a schematic structure like Figure 14. An important

complication concerns the I, T, and the R operations. There is probably not a single type of internal

encoding, transformation or response generation. Different E might map the same stimulus onto different I.

Different types of T or R may map the same 1. into different objects.

Definition of Equivalent Systems. Thus, for current purposes we will consider our system to be a four-triple
S = <e. PW' ,8> where is the set of encoding operations;: Cis the set of all cognitive ix where each I.

in Figure 14 is a set of ix , where 9 is the set of internal transformations, T, , operating on sets of cognitive

units, and where is the set of response operations Ri operating on unit sets. We are now ready to specify

when one system CS will be isomorphic to another system CS* in its behavior. This will be defined with

respect to a set of three equivalence relations on the components t..,Ci ,', andA . There is an equivalence

relation ;between the units of from CS andy * from CS*. We denote the equivalence between two units

i, and i: as i. ji1 . We say two sets I and 1* are equivalent if for every ix E I there is an i: E I* such that 1 .1

and Nice versa. This. we denote as I ZI". There is an equivalence relation fbetween f and " such that for

each E E there is an E, E " where Ei Z E" and vice versa. Similarly, there are defined equivalence

relations Z and j.

Definition of Equivalence. There is an equivalence relation - between two systems CS -- f, 4,' ,d >

and CS- = <e ->, ' if there are equivalence relations . . .and;such that

1. For all stimuli S. Ei , and E*, if E ZE then E.(S) E"(S)

i' E Eu i TI(S

2. For all I, 1*. T, and T*, if IM*l and T -*, then T(I) -fr'(I " )

3. For all I, 1*, R, and R*, ifl I* and R ZR*, then R(l) = R*(I*)

This definition guarantees that the relations illustrated in Figure 14 will hold everywhere.

Sufficient Condition for Mimicry. If wc take a theory of representation to bc a theory of the description of

cognitive units, then a thcory of rcprescntation lies in the choice of andC. It is nccessary to specify as
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well aJ so we know what the units in are describing. (It is the case that some of the units inc may not

correspond to any external event and may only be derivable from internal transformations). In Anderson

(1978) 1 showed under what circumstances two theories of representation- andl on one hand andS*

ande,* on the other -- were not behaviorally distinguishable. The result in Anderson was that, if there was

an equivalence relation Fon the internal representation so that part (1) of the equivalence definition held, then

one could always constructg * andA * so that parts (2) and (3) of the equivalence definition held.

If two theories of representation impose the same equivalence class on external stimuli. they can be made

to mimic each other. The important observation in this result is that it does not at all matter how the i. of a

theory are described to what their behavior predictions arc. All that matters is that they impose the same

equivalence class on external stimuli -- i.e., that for all S, E(S) T-*(S). Thus, if one theory uses propositions as

the sole internal description, another uses just pictures, and a third uses just sentences (word strings), they will

not be distinguishable behaviorally if they impose the same equivalence classes on external stimuli. By same

equivalence class I mean that, if one maps a set of external stimuli'onto one representation I, all map just that

set of stimuli into one representation. If they do, it will be possible to construct the equivalence relations Fon

rtresentations that guarantee overall equivalence in behavior. So. for example, if the propositional system

maps 513 distinct situations onto a proposition boy (a) & girl (b) & hit (ab), the image system would create

the same image of a boy hitting a girl for all and just these 513 situations, and the sentence system would

represent all and just these situations by "'he boy hit the girl".

The upshot of all this is that issues of how to describe cognitive units are not issues with behavioral

consequences unless one system of description makes discriminations the other does not. The issue remains

as to whether there is anything to the claims that there are various representational = -- whether it makes

sense to talk of propositions, images. and strings. The key to the definition of cognitive types lies in the

definition of equivalence above. We can construct an abstract cognitive system CS + = <e+, +, I

+ ) for any equivalence class of cognitive systems. The encoding operator F + for this abstract system will

consist of operators that arc formed from the equivalence classes of operaton. ,kcn from the individual

Similarly, we will defined +, +, +. So, suppose CS - <(, .,7, L > were one of the cognitive
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systems in this equivalence class. If E were an encoding process. then there is an Ei + E e + that is an

equivalence class that contains Ei and all the equivalent E*i from other cognitive systems. Similarly, if i1 E

C were a unit then i,+ Em4 + would be an equivalence class that contained i.. The equivalence-class

system, CS +, differs from the individual CS just in that it is not committed to the structure of the encoding of

the individual i, +. Thus, this equivalence-class system abstracts away from the notational detail of the

individual systems.

It is possible but not logically necessary that one could identify two subsets d + and 2 + ofcJ + which

we will call distinct representational types. They will be defined by non-identical subsets l+ and 0"2+ of

4. 71+ and' 2 + of a+, and 1 + and 2 + oPt~r Eachi. is amember ofA1 + if it is only output by

the encoding processes in i+ , if it is operated on by all and only the processes inv + ando 1 +. The

corresponding assertion is true of all ix E442+. It is possible, but not logically necessary that+ might be

capable of being partitioned into two or more disjoint sets in this manner.

In contrast, it is possible that all processes might be defined on all i. J -in which case the partition would

not be possible. It is also possible that each ix would have its own unique set of processes or that there may be

a great many sets of very few members - in either case, the partitioning would not be interesting. Thus, the

possibility of partitioning 4A+ into a small number of disjoint sets is an interesting empirical outcome.

Furthermore, to determine that this interesting situation holds does not require one to decide which of the

equivalence set of cognitive systems is the true one. Thus, it does not require that we decide how the

information is represented (in terms of structure or notation). It only requires that we be able to identify

which equivalence class of systems (i.e., which CS+) we are in. If we know that, we will know whether the

human mind admits of an interesting sense of cognitive type.

Note that this argument does not guarantee that it will be possible to decide whether there are
representational types. There may be two equivalence classes CSi + and CS, + which arc not empirically

discriminable. One equivalence class may have an interesting sense of cognitive type and the other may not.

All this discussion does is show that current negative results about representational identifiability do not
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eliminate the possibility of being able to establish that there are distinct cognitive types.

I
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Appendix II

Table 6 provides a production set that will determine if two Shepard and Metzler figures are congruent.

This production set is much more generally than the Shepard & Metzler task, however. It will decide whether

any simultaneously presented pair of connected figures are congruent after rotation. Figure 15 illustrates the

flow of control produced by the production system among the subgoals of the task. This production set

assumes that the subject uses the stimuli as an external memory and is internally building an image in working

memory. Figure 10 from earlier in the paper indicates where attention is focused in the external memory and

what is currently being held in the internal working memory at various points during the correspondence.

Insert Table 6 and Figure 15 about here.

Decomposition into Sub-parts. Production P1 is the first to apply and simply transforms the goal from that

of comparing the two objects to that of creating an image of one that is congruent to the other. It is assumed

that the system can only operate on the primitive objects--i.e.,-the sub-sub-figures or arms in Figure 9.

Therefore, much of the processing goes into decomposing the large structure into subunits. Production P2,

which is next to apply, is one such decomposition. It selects a part of objectl (the upper elbow) to focus on

* and sets as the new goal to create an image corresponding to this part. The selection of the upper elbow

rather than the lower one basically reflects a random choice. The next production to apply is P3 and it selects

a part of object2 in the same locus and makes the new subgoal to create an image of this part corresponding to

partl of objectl. Part (a) of Figure 10 illustrates where the system is at this point. It has chosen the two upper

elbows of the objects to compare. Note these will not match. As Just and Carpenter document in their eye

movement data, one of the problems with pairs that are not in similar orientation is that subjects will initially

select the wrong ends to compare. Hochberg & Gelman (1977) also document the importance of "landmark

features" to rotation of figures.

The two subparts focused upon contain subparts. Therefore, productions P2 and P3 will reapply a second

time and focus attention on the top segments of each figure. At this point the system has focused down to the

minimal parts of the representation and production P4 can apply which creates a copy of the focused part of



Table 6
A Production System for Rotating

Shepard and Metzler Figures

PI: IF the goal is to compare objectl to object2
THEN set as the subgoal to create an image of object2 that is congruent to object1

P2: IF the goal is to create an image of object2 that is congruent to objectl
and partl is a part of object1

THEN set as a subgoal to create an image of a part of object2 corresponding to part1

P3: IF the goal is to create an image of a part of object2 corresponding to part1
and part2 is an untried part of objcct2 in locus A
and part] is in locus A of objectl

THEN set as a subgoal to create an image of part2 that is congruent to part1
and tag part2 as tried

P4: IF the goal is to create an image of object2 that is congruent to objecti
and object2 has no subparts

THEN build an image of object2
and set as a subgoal to make the image congruent to objectl

P5: IF the goal is to make image1 congruent to object2
and imagel and object2 do not have the same orientation
and the orientation of objct2 is less than 1800 more than the orientation

of image1
THEN rotate image1 counterclockwise

P6: IF the goal is to make imagel congruent to objecti
and imagel and object] have the same orientation
and image1 and objecti do not match

THENPOP with failure

P7: IF the goal is to make imagel congruent to object1
and imagel and object1 match

THEN POP with success
and record that imagel is congruent to object1

P8: IF the goal is to create an image of object2 that is congruent to object1
and an image is congruent to objectl

THEN POP with the result that image

P9: IF the goal is to create an image of object2 that is congruent to objectl
and no congruent image was created

THEN POP with failure

PIO: IF the goal is to create an image of a part of object2 corresponding to partl
and an image is congruent to partl

THEN POP with thc result that image

. .. . ".. . - ... - . _ .s . , . _ .



P11: IF the goal is to create an image of a part of objccl corresponding to partl
and there are no more candidate parts of object2

THEN POP with failure

P12: IF the goal is to create an image of object2 that is congruent to object1
and there is an image of part2 of object2 that is congruent to partl of objectl
and part3 of objectl is attached to part.
and part4 of object2 is attached to part2

THEN build an image of part4
and set as the subgoal to attach to the image of part2 this image of part4 so that

it is congruent to part3

P13: IF the goal is to attach image2 to imagel so that image2 is congruent to part3
and imagel is an image of part].
and image2 is an image of part2
and part2 is attached to part1 at locus-A

THEN attach image2 to imagel at locus-A
and set as a subgoal to test if image2 is congruent to part3

P14: IF the goal is to test if an image is congruent to an object
and the image and the object match

THEN POP with success

P15: IF the goal is to test if an image is congruent to a part
and the image and the object do not match

THEN POP with failure

P16: IF the goal is to attach imagel to image2 so that it is congruent to a part
and a subgoal has resulted in failure

THEN POP with failure

P17: IF the goal is to create an image of a part of object2 corresponding to part.
and part2 is an untried part of object2

THEN set as a subgoal to create an image of part2 that is congruent to part
and tag pan2 as tried

PI: IF the goal is to attach to imagel imagc2 so that it is congruent to part3
and this has been successfully done

THEN POP with the combined imagel and image2 as a result

P19: IF the goal is to create an image of objcctl that is congruent to object2
and object2 is not primitive
and a successful image has been synthesized

THEN that image is of object2
and it is congruent to object2
and POP with the result that image

P20: IF the goal is to create an image of object2 that is congruent to object]
and an image] of part2 of object2 has been created

• ill I [_ .U.



and the image is congruent to part1 of objcct2
and partl is attached to part3
and par2 is attached to part4
and part4 is not primitive

THEN set as a subgoal to attach images of primitive parts of part4 to the
image so that they are congruent to part3

P21: IF the goal is to attach images of primitive parts of object2 to imagel so
that they are congruent to object].

and part2 is a primitive part of object2
and imagel is an image of object4
and part2 is attached to object4
and imagel is congruent to object3
and partl is attached to object3
and partl is a primitive part of objectl

THEN build an image2 of part2
and set as the subgoal to attach image2 to imagel so that it is congruent to part]

P22: IF the goal is to attach images of primitive parts of object2 to imagel so
that they are congruent to objec]

and image2 has been created of part2 of object2
and part2 is attached to par4 of object2
and image2 is congruent to partl of object]
and partl is attached to part3 of objectl

THEN build image3 of part4
and set as the subgoal to attach image3 to imagel so that it is congruent to parz3

P23: IF the goal is to attach primitive parts-of object2 to imagel so that
they are congruent to object2

and all the primitive parts have been attached
THEN POP with the result being the synthesized image

P24: IF the goal is to compare object]. and object2
and an image of object2 has been created congruent to objectl

THEN POP with the conclusion that they are congruent
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object2 and sets as the new subgoal to put this in congruence with the corresponding pan in objectl. Pan (b)

of Fig. 10 illustrates the situation at this point with the two upper arms focused and an image of part 2 created

but not yet rotated into congruence with objcctl. Memory for objectl and object2 is being supported by the

environment; working memory must maintain the image.

Rotation of Arms. It is at this point that production P5 applies. It matches on the fact that the images and

the part of objectl do not have the same orientation and determines that a counterclockwise rotation will

bring them into orientation. The action calls for this rotation. It is assumed that this production will produce

a new image with a small adjustment in orientation. If the object part and the image part are not in

concspondence, P5 will apply again and again until they are. When they have the same orientation,

production P6 or P7 will apply. Therefore, a greater angle of separation will result in more applications of

production P5. Production P6 matches when the image and the object have the same orientation but do not

match. In the case of Shepard and Metzler block diagrams, this could only happen if the segments had

different length. P7 applies when the image and object match

In contrast to PI-P4, productions PS-P7 assume a number of processes which are only defined on images.

They assume the ability to match the orientation of an image as an emergent property. They assume the

ability to match one primitive image to another. This matching and the matching of the orientation assume

an approximate process that will accept near equality. And of course, P5 assumes the ability to rotate images.

(Implied in this is also an assumed ability to extract out the axis of rotation.) Thus, productions PS-P7 display

quite clearly why imagery is a distinct representational medium in that it has its distinct processes. Thcy also

demonstrate that there is nothing contradictory between these distinct processes and a production system

architecture. Note here. as elsewhere in the paper, there is no attempt to analyze the mechanisms used by the

production system interpreter to produce the rotation. Again the literature abounds with proposals for

subanalyscs of imagery and it would be perfectly reasonable to pursue such an analysis within this framework.

However. significantly, one does not need to make a commitment to such a subanalysis to conclude that

imagery has distinct processes.
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Detection of Mismatch. After some number of applications of P5 followed by a recognition of congruence

by P7 the situation will be as illustrated in part (c) of Figure 10 with control returned to the goal of creating an

image of the arm of object2 congruent to objectl's arm. At this point P8 will recognize that this goal has been

achieved and return to the higher goal of creating an image congruent to the top arm of objecta. Plo

recognizes this as successful and returns to the still higher goal of creating an image of the top elbow of

object2 that is congruent to the top elbow of objectl. The situation at this point is illustrated in part (d) of

Figure 10: The system has refocused on the elbows and it has a rotated fragment of the second elbow.

At this point production P12 applies. Its condition matches due to the fact that a congruent image has been

created for the end arm of the top elbow. It notes that there are a pair of attached subparts to match; it creates

an image of the arm of object2 attached to the upper end arm and sets as a subgoal to attach that image to the

existing image such that the resulting image is congruent to objectl's upper elbow. Then production P13

applies: it notes where the two parts are attached in the object, and synthesizes a new image with the two

subimages so attached. Part (e) of Fig. 10 shows the resulting situation. Note that this example illustrates the

capacity for image synthesis.

Production P13 also sets the goal to determine if the new part of the synthesized subimage matches the

corresponding part of objectl. P15 will apply here because the image and sub-sub-part differ in length and

will not match. This will POP failure back to the goal of attaching a congruent image to the initial image.

Production P16 will then further POP failure back to the goal of creating an image of the top elbow object2

that is congruent to the top elbow of objectl. Then production P9 POPs failure back to the goal of creating an

image of a part of object2 congruent to the top elbow of object1.

Selection of Another Elbow. It is at this point production P17 applies to select the other end part of

object2, the bottom part, to see if this can be put in congruence with the top part of objcctl. Part (0 of Figure

10 illustrates the situation at this point. The system is focused on the top elbow of objcctl and the bottom

elbow of object2. It is no longer maintaining the old image and it is about to create an image of the subpart.

Then productions P2 and P3 apply to focus the system's attention on the end arms. As before P4 will create
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an image--in this case of the bottom arm of object2. Then production PS will rotate this image into

congruence with the upper arm of objectl. Then P7 will note that the image and objectl's arm are congruent.

The situation at this point is represented in part (g) of Figure 10. The system is focused on the two ends and

has created an image of the object2 end rotated into congruence with the objecti end.

Then productions P8 and P10 apply to POP control back to the higher level goal of getting an image of the

bottom elbow of object2 into congruence with the top elbow of objecti. Production P12 applies next and sets

the subgoal of attaching an image of the other arm in the bottom elbow of object2 to the image. P13 performs

this operation and sets the goal to check whether the resulting image is congruent with objectl.

The situation at this point is illustrated in part (h) of Figure 10. Production P14 recognizes that the new

part of this synthesized subimage is congruent with objectl and returns success to the higher goal. Production

P18 POPs control back to the goal of creating an image of the elbow. Production P19 recognizes that a

successful image has been synthesized of the image of bottom half of object2 and that this is congruent to the

top half. It POPs success back to the goal of finding some part congruent to the top half of objectl. Then P10

POPs success back to the goal of establishing an image of object2 congruent to objectI.

Attaching the Other Elbow. Then production P20 applies. It recognizes the fact that a partial image has

been created and there is another non-primitive part of object2 (the top halo that needs to be imaged in

congruence with the bottom half of objecti. It sets as a subgoal to break this part of object2 into primitive

parts and attach each of these to the existing image such that congruence is preserved. Production P21 then

applies and selects the next pair of arms to process. It sets as the new goal to attach the upper interior arm of

object2 to the image so that it is congruent with the lower interior arm of objcctl. The situation at this point is

illustrated in Part (i) of Figure 10. Production P13 performs the attachmcnt; production P14 confirms that

congruence is preserved and production P18 returns control back to the goal of auaching primitive parts. The

situation at this point is illustrated in part (j) of Figure 10. Next to apply is production P22 which creates an

image of the remaining primitive pan of object2 and sets as a subgoal to attach it to the image so that it is

congruent to objectI.
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The situation at this point is illustrated in part (k) of Figure 10. Note that all image has been created of the

top end arm of object2 but it has not yet been attached with the larger image. Production P13 performs this

synthesis and P14 tests for congruence. P18 returns control back to the higher goal of attaching congruent

subparts. P23 returns control from the goal of attaching primitive parts of the bottom half of object2. P19

next applies to recognize that a complete image of object2 has been synthesized congruent to objecti and

returns control to the top level goal of comparing the objects. P24 concludes they are congruent because a

congruent image has been created. The final situation is illustrated in part (1) of Figure 10 with a complete

image of object2 created congruent to objectI. Of course, with attention no longer focused on it the image

will quickly fade from working memory. The typical experimental procedure also removes the two objects.

The production set is then ready to respond to the next pair of stimuli.

I .. M'l l iiWA
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Figure Captions

Figure 1. The general architecture assumed in the ACT production systems.

Figure 2. A propositional representation of the string "The tall young man". Also
represented is the information that youn is stressed and that tall was pronounced
"T + AH".

Figure 3. A string representation making explicit the type-token distinction. Also
represented are substructure links giving part information and attribute links
giving additional properties of the tokens.

Figure 4. Alternate notation for visual images. See text for discussion.

Figure 5. Procedure in Santa's experiment (1977). Subjects studied an initial array and then
had to decide whether one of a set of arrays contained the same elements. Part A
illustrates the geometric condition and part B the verbal condition.

Figure 6. Reaction times for Santa's experiment (1977) showing an interaction between
type of material and test configuration.

Figure 7. Fruitface. See text for discussion.

Figure 8. Syntheses Problems. Combine the two figures in the two columns so the X's and

O's overlap. What is the resulting image?

Figure 9. Decomposition of a Shepard and Metzler figure into subfigures and these into
sub-sub-figures.

Figure 10. Various states of working memory during the processing of a pair of Shepard and
Metzler figures. The shaded areas of the two objects represent focus of attention.

Figure 11. An example of a propositional network. See text for discussion.

Figure 12. A hypothetical hierarchical encoding in which the boxed units cannot be
retrieved.

Figure 13. A tangled hierarchy of multiple representational types.

Figure 14. An illustration of how different representations can be processed by different
systems to yield identical behavior.

Figure 15. The flow of control among goals in the production system of Table 3. Checks
signify successful goals and X's unsuccessful goals.
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XEROX Palo Alto Research Center
Ms. Carole A. Bsgley 333! Coyote Road
Minnesota Educational Computing Palo Alto, CA 94304

Consortium
2354 Hidden Valley Lane 1 Dr. Bruce Buchanan
Stillwater, MN 55092 Department of Computer Science

Stanford University
Dr. Jonathan Baron Stanford, CA 94305
Dept. of Psychology
University of Pennsylvania 1 DR. C. VICTOR BUNDERSON
3813-15 Walnut St. T-3 WICAT ITIC.
Philadlphi, PA 19104 UNIVERSITY PLAZA, SUITE 10

1160 S0. STATE ST.
Mr Avron Barr OREM, UT 84057
Department of Computer Science
Stanford University 1 Dr. Pat Carpenter
Stanford, CA 914305 Department of Psychology

Carnegie-Mellon University
Pittsburgh, PA 1521?
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I Dr. John P. Carroll 1 LCOL J. C. Eggenberger
Psychometric Lab DIRECTORATE OF PERSONNEL APPLIED RESEt
Univ. of No. Carolina NATIONAL DEFENCE HQ
Davie Hall 013A 101 COLONEL BY DRIVE
Chapel Hill, NC 27514 OTTAWA, CANADA KIA 0K2

Charles Myers Library 1 Dr. Ed Feigenbaum
Livingstone House Department of Computer Science
Livingstone Road Stanford University
Stratford Stanford, CA 94305
London E15 2LJ
ENGLAND 1 Dr. Richard L. Ferguson

The American College Testing Program
Dr. William Chase P.O. Box 168
Department of Psychology Iowa City, IA 52240
Carnegie Mellon University
Pittsburgh, PA 15213 1 Mr. Wallace Feurzeig

Bolt Beranek & Newman, Inc.
Dr. Micheline Chi 50 Moulton St.
Learning R & D Center Cambridge, MA 02138
University of Pittsburgh
3939 O'Hara Street 1 Dr. Victor Fields
Pittsburgh, PA 15213 Dept. of Psychology

Montgomery College
Dr. William Clancey Rockville, MD 20850
Department of Computer Science
Stanford University 1 DR. JOHN D. FOLLEY JR.
Stanford, CA 94305 APPLIED SCIENCES ASSOCIATES INC

VALENCIA, PA 16059
Dr. kllan M. Collins
Bolt Beranek & Newman, Inc. 1 Dr. John R. Frederiksen
50 Moulton Street Bolt Beranek & Newman
Cambridge, Ma 02138 50 Moulton Street

Cambridge, MA 02138
Dr. Lynn A. Cooper
LRDC 1 Dr. Alinda Friedman
University of Pittsburgh Department of Psychology
3939 O'Hara Street University of Alberta
Pittsburgh, PA 15213 Edmonton, Alberta

CANADA T6G 2E9
Dr. Meredith P. Crawford
American Psychological Association I Dr. R. Edward Geiselman
1200 17th Street, N.W. Department of Psychology
Washington, DC 20036 University of California

Los Angeles, CA 90024
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DR. ROBERT GLASER 1 Dr. Kristina Hooper
LRDC Clark Kerr Hall
UNIVERSITY OF PITTSBURGH University of California
3939 O'HARA STREET Santa Cruz, CA 95060
PITTSBURGH, PA 15213

1 Glenda Greenwald, Ed.
Dr. Marvin D. Glock "Human Intelligence Newsletter"
217 Stone Hall P. 0. Box 1163
Cornell University Birmingham, MI 48012
Ithaca, NY 14853

1 Dr. Earl Hunt
Dr. Daniel Gopher Dept. of Psychology
Industrial & Management Engineering University of Washington
Technion-Israel Institute of Technology Seattle, WA 98105
Haifa
ISRAEL 1 Dr. Ed Hutchins

Havy Personnel R&D Center
DR. JAMES G. GREENO San Diego, CA 92152
LRDC
UNIVERSITY OF PITTSBURGH 1 Dr. Steven W. Keele
3939 O'HARA STREET Dept. of Psychology
PITTSBURGH, PA 15213 University of Oregon

Eugene, CR 97403
Dr. Harold Hawkins
Department of Psychology 1 Dr. Walter Kintsch
University of Oregon - Department of Psychology
Eugene -OR 97403 University of Colorado

Boulder, CO 80302
Dr. Barbara Hayes-Roth
The Rand Corporation 1 Dr. David Kieras
1700 Main Street Department of Psychology
Santa Monica, CA 90406 University of Arizona

Tuscon, AZ 85721
Dr. Frederick Hayes-Roth
The Rand Corporation 1 Dr. Stephen Kosslyn
1700 Main Street Harvard University
Santa Monica, CA 90406 Department of Psychology

3? Kirkland Street.
Dr. Dustin H. Heuston Cambridge, YA 021318
Wicat, Inc.
Box 986 1 Dr. Marcy Lansman
Orem, UT 84057 Department of Psychology, NI 25

University of Washington
Dr. James R. Hoffman Seattle, WA 98195
Department of Psychology
University of Delaware 1 Dr. Jill Larkin
Newark, DE 19711 Department of Psychology

Carnegie Yello: Uriversity

Pittsburgh, PA 1521'z
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Dr. Alan Lesgold 1 Dr. James W. Pellegrino
Learning R&D Center University of California,
University of Pittsburgh Santa Barbara
Pittsburgh, PA 15260 Dept. of Psychology

Santa Barabara, CA 93106
Dr. Michael Levine
Department of Educational Psychology 1 MR. LUIGI PETRULLO
210 Education Bldg. 2431 N. EDGEWOOD STREET
University of Illinois ARLINGTON, VA 22207
Champaign, IL 61801

1 Dr. Richard A. Pollak
Dr. Erik McWilliams Director, Special Projects
Science Education Dev. and Research Minnesota Educational Computing Consorti
National Science Foundation 2520 Broadway Drive
Washington, DC 20550 St. Paul,MN 55113

Dr. Mark Miller 1 Dr. Martha Polson
TI Computer Science Lab Department of Psychology
C/O 2E24 Winterplace Circle Campus Box 346
Plano, TX 75075 University of Colorado

Boulder, CO P0309
Dr. Allen Munro
Behavioral Technology Laboratories 1 DR. PETER POLSON
1845 Elena Ave., Fourth Floor DEPT. OF PSYCHOLOGY
Redondo Beach, CA 90277 UNIVERSITY OF COLORADO

BOULDER, CO 80309
Dr. Donald A Norman
Dept. of Psychology C-009 1 Dr. Steven E. Poltrock
Univ. of California, San Diego Department of Psychology
La Jolla, CA 92093 University of Denver

Denver,CO 80208
Committee on Human Factors
JH 811 1 MTNRAT M. L. RAUCH
2101 Constitution Ave. NW P II 4
Washington, DC 20418 BUNDESMINISTERIUM DER VERTEIDIGUNG

POSTFACH 1328
1 Dr. Seymour A. Papert D-53 BONN 1, GERMANY

Massachusetts Institute of Technology
Artificial Intelligence Lab 1 Dr. Fred Reif
5h5 Technology Square SESAME
Cambridge, MA 02139 c/o Physics Department

University of California
Dr. James A. Paulson Berkely, CA 94720
Portland State University
P.O. Box 751 1 Dr. Lauren Resnick
Portland, OR 97207 LRDC

University of Pittsburgh
2940 O'Hara Street
Pittsburgh, PA l 213

/
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Mary Riley 1 Robert S. Siegler
LRDC Associate Professor
University of Pittsburgh Carnegie-Mellon University
3939 O'Hara Street Department of Psychology
Pittsburgh, PA 15213 Schenley Park

Pittsburgh, PA 15213
Dr. Andrew M. Rose
American Institutes for Research 1 Dr. Edward E. Smith
1055 Thomas Jefferson St. NW Bolt Beranek & Newman, Inc.
Washington. DC 20007 50 Moulton Street

Cambridge, MA 02138
Dr. Ernst Z. Rothkopf
Bell Laboratories 1 Dr. Robert Smith
600 Mountain Avenue Department of Computer Science
Murray Hill, NJ 07974 Rutgers University

New Brunswick, NJ 08903
Dr. David Rumelhart
Center for Human Information Processing 1 Dr. Rict-ard Snow
Univ. of California, San Diego School of Education
La Jolla, CA 92093 Stanford University

Stanford, CA 94305
DR. WALTER SCHNEIDER
DEPT. OF PSYCHOLOGY 1 Dr. Robert Sternberg
UNIVERSITY OF ILLINOIS Dept. of Psychology
CHAMPAIGN, IL 61820 Yale University

Box 11A, Yale Station
Dr. Alan Schoenfeld New Haven, CT 06520
Department of Mathematics
Hamilton College 1 DR. ALBERT STEVENS
Clinton, NY 13323 BOLT BERANEK & NEWMAN, INC.

50 MOULTON STREET
DR. ROBERT J. SEIDEL CAMBRIDGE. MA 0213P
INSTRUCTIONAL TECHNOLOGY GROUP

HUMRRO 1 Dr. Thomas G. Sticht
300 N. WASHINGTON ST. Director, Basic Skills Division
ALEXANDRIA, VA 22314 HUMRRO

?00 N. Washington Street
Committee on Cognitive Research Alexandria,VA 22311
f Dr. Lonnie R. Sherrod
Social Science Research Council 1 David F. Stone, Ph.D.
605 Third Avenue Hazeltine Corporation
New York, NY 10016 76P0 Old Springhouse Road

McLean, VA 22102
Dr. David Shucard
Brain Sciences Labs 1 DR. PATRTCK SUPPES
National Jewish Hospital Reseprch Center INSTITUTE FOR MATHEMATTCAL STUITES TN

Nntional Asthma Center THE 5 CIAL CTFNCEF
Denver, CO 8C20, STANFrRD UN'VERSITY

STANFORD, CA tJ3Cn
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Dr. Kikumi Tatsuoka 1 Dr. reith T. Wescourt
Computer Based Education Research Tnformation Sciences Dept.

Laboratory The Rand Corporation
252 Engineering Pesearch Laboratory 1700 Main St.
University of Illinois Santa Monica, CA 90406
Urbana, IL 61801

1 DR. SUSAN E. WHITELY
Dr. John Thomas PSYCHOLOGY DEPARTMENT
IBM Thomas J. Watson Research ('enter UNIVERSITY OF KANSAS
P.O. Box 218 LAWRENCE, KANSAS 66044
Yorktown Heights, NY 10598

1 Dr. Christopher Wickens
1 DR. PERRY THORNDYKE Department of Psychology

THE RAND CORPORATION University of Illinois
1700 MAIN STREET Champaign, IL 61820
SANTA MONICA, CA 90406

1 Dr. Karl Zinn
Dr. Douglas Towne Center for research on Learning
Univ. of So. California snd Teaching
Behavioral Technology Labs University of Michigan
18 5 S. Elena Ave. Ann Arbor, MI 4810U
Redondo Beach, CA 90277

Dr. J. Uhlaner
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364

Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen Hall, Appipn Way
Cambridge, MA 02138

Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

''I DR. GERSHON WELTfIAN
PtRCEPTRONICS INC.
6271 VARIEL AVE.
WOODLAN'D HILLS, CA 91367


